Concept

Local-density approximation

Summary
Local-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space (and not, for example, derivatives of the density or the Kohn–Sham orbitals). Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model. In this regard, LDA is generally synonymous with functionals based on the HEG approximation, which are then applied to realistic systems (molecules and solids). In general, for a spin-unpolarized system, a local-density approximation for the exchange-correlation energy is written as :E_{\rm xc}^{\mathrm{LDA}}[\rho] = \int \rho(\mathbf{r})\epsilon_{\rm xc}(\rho(\mathbf{r}))\ \mathrm{d}\mathbf{r}\ , where ρ is the electronic density and εxc is the exchange-correl
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading