Concept

# Hume's principle

Summary
Hume's principle or HP says that the number of Fs is equal to the number of Gs if and only if there is a one-to-one correspondence (a bijection) between the Fs and the Gs. HP can be stated formally in systems of second-order logic. Hume's principle is named for the Scottish philosopher David Hume and was coined by George Boolos. HP plays a central role in Gottlob Frege's philosophy of mathematics. Frege shows that HP and suitable definitions of arithmetical notions entail all axioms of what we now call second-order arithmetic. This result is known as Frege's theorem, which is the foundation for a philosophy of mathematics known as neo-logicism. Origins Hume's principle appears in Frege's Foundations of Arithmetic (§63), which quotes from Part III of Book I of David Hume's A Treatise of Human Nature (1740). Hume there sets out seven fundamental relations between ideas. Concerning one of these, proportion in quantity or number, Hume argues that our reasoning about proportion
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units