Concept

Tate's thesis

In number theory, Tate's thesis is the 1950 PhD thesis of completed under the supervision of Emil Artin at Princeton University. In it, Tate used a translation invariant integration on the locally compact group of ideles to lift the zeta function twisted by a Hecke character, i.e. a Hecke L-function, of a number field to a zeta integral and study its properties. Using harmonic analysis, more precisely the Poisson summation formula, he proved the functional equation and meromorphic continuation of the zeta integral and the Hecke L-function. He also located the poles of the twisted zeta function. His work can be viewed as an elegant and powerful reformulation of a work of Erich Hecke on the proof of the functional equation of the Hecke L-function. Erich Hecke used a generalized theta series associated to an algebraic number field and a lattice in its ring of integers. Kenkichi Iwasawa independently discovered essentially the same method (without an analog of the local theory in Tate's thesis) during the Second World War and announced it in his 1950 International Congress of Mathematicians paper and his letter to Jean Dieudonné written in 1952. Hence this theory is often called Iwasawa–Tate theory. Iwasawa in his letter to Dieudonné derived on several pages not only the meromorphic continuation and functional equation of the L-function, he also proved finiteness of the class number and Dirichlet's theorem on units as immediate byproducts of the main computation. The theory in positive characteristic was developed one decade earlier by Ernst Witt, Wilfried Schmid, and Oswald Teichmüller. Iwasawa-Tate theory uses several structures which come from class field theory, however it does not use any deep result of class field theory. Iwasawa–Tate theory was extended to the general linear group GL(n) over an algebraic number field and automorphic representations of its adelic group by Roger Godement and Hervé Jacquet in 1972 which formed the foundations of the Langlands correspondence.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.