**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# ON THE QUATERNIONIC p-ADIC L-FUNCTIONS ASSOCIATED TO HILBERT MODULAR EIGENFORMS

Abstract

We construct p-adic L-functions associated to cuspidal Hilbert modular eigenforms of parallel weight two in certain dihedral or anticyclotomic extensions via the Jacquet-Langlands correspondence, generalizing works of Bertolini-Darmon, Vatsal and others. The construction given here is adelic, which allows us to deduce a precise interpolation formula from a Waldspurger-type theorem, as well as a formula for the dihedral mu-invariant. We also make a note of Howard's non-vanishing criterion for these p-adic L-functions, which can be used to reduce the associated Iwasawa main conjecture to a certain non-triviality criterion for families of p-adic L-functions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (27)

Related publications (16)

L-function

In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization. The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory.

Étale cohomology

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct l-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

Galois module

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Given a field K, the multiplicative group (Ks)× of a separable closure of K is a Galois module for the absolute Galois group.

We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...

Let $Y$ be a simply connected simple algebraic group over an algebraically closed field $k$ of characteristic $p$ and let $X$ be a maximal closed connected simple subgroup of $Y$.
Excluding some small primes in specific cases, we classify the $p$-restrict ...

Benjamin Pierre Charles Wesolowski

We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...