In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. The ability to perform integer arithmetic on the keys allows integer sorting algorithms to be faster than comparison sorting algorithms in many cases, depending on the details of which operations are allowed in the model of computing and how large the integers to be sorted are. Integer sorting algorithms including pigeonhole sort, counting sort, and radix sort are widely used and practical. Other integer sorting algorithms with smaller worst-case time bounds are not believed to be practical for computer architectures with 64 or fewer bits per word. Many such algorithms are known, with performance depending on a combination of the number of items to be sorted, number of bits per key, and number of bits per word of the computer performing the sorting algorithm. Time bounds for integer sorting algorithms typically depend on three parameters: the number n of data values to be sorted, the magnitude K of the largest possible key to be sorted, and the number w of bits that can be represented in a single machine word of the computer on which the algorithm is to be performed. Typically, it is assumed that w ≥ log2(max(n, K)); that is, that machine words are large enough to represent an index into the sequence of input data, and also large enough to represent a single key. Integer sorting algorithms are usually designed to work in either the pointer machine or random access machine models of computing. The main difference between these two models is in how memory may be addressed. The random access machine allows any value that is stored in a register to be used as the address of memory read and write operations, with unit cost per operation. This ability allows certain complex operations on data to be implemented quickly using table lookups.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
BIO-630: Practical - Radtke Lab
Self renewing organs. Flow Cytometry as tools for the analysis of the hematopoietic system.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Show more
Related lectures (65)
Exploring Car Data Analysis
Explores car data analysis using Python programming for tasks like file handling, dictionary creation, and attribute analysis.
Quick Sort: Divide-and-Conquer
Explores the Quick Sort algorithm, focusing on its divide-and-conquer approach and time complexity analysis.
Analysis of Randomized Quick Sort
Analyzes the running time and comparisons in randomized quick sort, proving its efficiency and optimality in comparison sorting.
Show more
Related publications (34)

Computational methods for live heart imaging with speed-constrained microscopes

Olivia Mariani

Imaging methods to capture the beating and developing heart inside embryonic animal models such as the zebrafish are a key component for the study of fundamental biological processes such as cardiac birth defects or tissue regeneration. However, live heart ...
EPFL2021

Device and method for sorting biological entities

Francesco Mondada, Norbert Crot, Frank Bonnet

A device for sorting biological entities is disclosed. The device comprises a channel to canalize the biological entities and a selector having slots to accommodate said entities. Means for detecting and analysing an optical parameter of the biological ent ...
2019

Efficient Learning from Comparisons

Lucas Maystre

Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
EPFL2018
Show more
Related concepts (7)
Quicksort
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot.
Radix sort
In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process is repeated for each digit, while preserving the ordering of the prior step, until all digits have been considered. For this reason, radix sort has also been called bucket sort and digital sort. Radix sort can be applied to data that can be sorted lexicographically, be they integers, words, punch cards, playing cards, or the mail.
Selection sort
In computer science, selection sort is an in-place comparison sorting algorithm. It has an O(n2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity and has performance advantages over more complicated algorithms in certain situations, particularly where auxiliary memory is limited. The algorithm divides the input list into two parts: a sorted sublist of items which is built up from left to right at the front (left) of the list and a sublist of the remaining unsorted items that occupy the rest of the list.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.