Hazard analysis and critical control points, or HACCP (ˈhæsʌp), is a systematic preventive approach to food safety from biological, chemical, and physical hazards in production processes that can cause the finished product to be unsafe and designs measures to reduce these risks to a safe level. In this manner, HACCP attempts to avoid hazards rather than attempting to inspect finished products for the effects of those hazards. The HACCP system can be used at all stages of a food chain, from food production and preparation processes including packaging, distribution, etc. The Food and Drug Administration (FDA) and the United States Department of Agriculture (USDA) require mandatory HACCP programs for juice and meat as an effective approach to food safety and protecting public health. Meat HACCP systems are regulated by the USDA, while seafood and juice are regulated by the FDA. All other food companies in the United States that are required to register with the FDA under the Public Health Security and Bioterrorism Preparedness and Response Act of 2002, as well as firms outside the US that export food to the US, are transitioning to mandatory hazard analysis and risk-based preventive controls (HARPC) plans.
It is believed to stem from a production process monitoring used during World War II because traditional "end of the pipe" testing on artillery shells' firing mechanisms could not be performed, and a large percentage of the artillery shells made at the time were either duds or misfiring. HACCP itself was conceived in the 1960s when the US National Aeronautics and Space Administration (NASA) asked Pillsbury to design and manufacture the first foods for space flights. Since then, HACCP has been recognized internationally as a logical tool for adapting traditional inspection methods to a modern, science-based, food safety system. Based on risk-assessment, HACCP plans allow both industry and government to allocate their resources efficiently by establishing and auditing safe food production practices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Food processing is the transformation of agricultural products into food, or of one form of food into other forms. Food processing includes many forms of processing foods, from grinding grain to make raw flour to home cooking to complex industrial methods used to make convenience foods. Some food processing methods play important roles in reducing food waste and improving food preservation, thus reducing the total environmental impact of agriculture and improving food security.
Through a project, this course will introduce the critical steps in developing a chemical process in the context of industry decarbonisation, from the lab to industrial scale.
Explores probiotic technology, postbiotics, and microbial health, emphasizing the importance of maintaining a healthy microbiome and the impact of postbiotics on immune modulation.
Phytotechnologies are ecotechnologies relating to the use of vegetation, to resolve environmental problems in a watershed management, by prevention of landscape degradation, remediation and restoration of degraded ecosystems, kontrol of environmental proce ...
Smart health monitoring devices, known as Wireless Body Sensor Nodes (WBSN) are transforming today's health-care landscape, shifting it from traditional hospital-based methods toward more personalized approaches. Their demand is ever-increasing in the mode ...