In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).
Let Ωp,q be the vector bundle of complex differential forms of degree (p,q). In the article on complex forms, the Dolbeault operator is defined as a differential operator on smooth sections
Since
this operator has some associated cohomology. Specifically, define the cohomology to be the quotient space
If E is a holomorphic vector bundle on a complex manifold X, then one can define likewise a fine resolution of the sheaf of holomorphic sections of E, using the Dolbeault operator of E. This is therefore a resolution of the sheaf cohomology of .
In particular associated to the holomorphic structure of is a Dolbeault operator taking sections of to -forms with values in . This satisfies the characteristic Leibniz rule with respect to the Dolbeault operator on differential forms, and is therefore sometimes known as a -connection on , Therefore, in the same way that a connection on a vector bundle can be extended to the exterior covariant derivative, the Dolbeault operator of can be extended to an operator
which acts on a section by
and is extended linearly to any section in . The Dolbeault operator satisfies the integrability condition and so 'Dolbeault cohomology with coefficients in' can be defined as above:
The Dolbeault cohomology groups do not depend on the choice of Dolbeault operator compatible with the holomorphic structure of , so are typically denoted by dropping the dependence on .
In order to establish the Dolbeault isomorphism we need to prove the Dolbeault–Grothendieck lemma (or -Poincaré lemma).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology.
In complex geometry, the lemma (pronounced ddbar lemma) is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .
In mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients. Complex forms have broad applications in differential geometry. On complex manifolds, they are fundamental and serve as the basis for much of algebraic geometry, Kähler geometry, and Hodge theory. Over non-complex manifolds, they also play a role in the study of almost complex structures, the theory of spinors, and CR structures.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
We compute L-2-Betti numbers of postliminal, locally compact, unimodular groups in terms of ordinary dimensions of reduced cohomology with coefficients in irreducible unitary representations and the Plancherel measure. This allows us to compute the L-2-Bet ...
Academic Press Inc Elsevier Science2014
, , ,
The set of solutions of a parameter-dependent linear partial differential equation with smooth coefficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized reduced basis method as a fast computational tool for ...
Springer2012
In this thesis we are interested in the following problem : given two differential k–forms g and f, most of the time they will be assumed closed, on what conditions can we pullback g to f by a map φ ? In other words we ask when it is possible to solve the ...