Summary
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology. It has major applications in two settings: Riemannian manifolds and Kähler manifolds. Hodge's primary motivation, the study of complex projective varieties, is encompassed by the latter case. Hodge theory has become an important tool in algebraic geometry, particularly through its connection to the study of algebraic cycles. While Hodge theory is intrinsically dependent upon the real and complex numbers, it can be applied to questions in number theory. In arithmetic situations, the tools of p-adic Hodge theory have given alternative proofs of, or analogous results to, classical Hodge theory. The field of algebraic topology was still nascent in the 1920s. It had not yet developed the notion of cohomology, and the interaction between differential forms and topology was poorly understood. In 1928, Élie Cartan published a note entitled Sur les nombres de Betti des espaces de groupes clos in which he suggested, but did not prove, that differential forms and topology should be linked. Upon reading it, Georges de Rham, then a student, was immediately struck by inspiration. In his 1931 thesis, he proved a spectacular result now called de Rham's theorem. By Stokes' theorem, integration of differential forms along singular chains induces, for any compact smooth manifold M, a bilinear pairing As originally stated, de Rham's theorem asserts that this is a perfect pairing, and that therefore each of the terms on the left-hand side are vector space duals of one another.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.