Spatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is geospatial analysis, the technique applied to structures at the human scale, most notably in the analysis of geographic data. It may also be applied to genomics, as in transcriptomics data.
Complex issues arise in spatial analysis, many of which are neither clearly defined nor completely resolved, but form the basis for current research. The most fundamental of these is the problem of defining the spatial location of the entities being studied. Classification of the techniques of spatial analysis is difficult because of the large number of different fields of research involved, the different fundamental approaches which can be chosen, and the many forms the data can take.
Spatial analysis began with early attempts at cartography and surveying. Land surveying goes back to at least 1,400 B.C in Egypt: the dimensions of taxable land plots were measured with measuring ropes and plumb bobs. Many fields have contributed to its rise in modern form. Biology contributed through botanical studies of global plant distributions and local plant locations, ethological studies of animal movement, landscape ecological studies of vegetation blocks, ecological studies of spatial population dynamics, and the study of biogeography. Epidemiology contributed with early work on disease mapping, notably John Snow's work of mapping an outbreak of cholera, with research on mapping the spread of disease and with location studies for health care delivery. Statistics has contributed greatly through work in spatial statistics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Acquisition de concepts et compétences de base liées à la représentation numérique des données géographiques et à leur insertion dans des SIG. Apprentissage de processus d'analyse spatiale pour les in
This course teaches how to apply exploratory spatial data analysis to health data. Teaching focuses on the basics of spatial statistics and of epidemiology, and proposes a context to analyse geodatase
Bases de la géomatique pour les ingénieur·e·s civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthod
Ce cours s’adresse aux étudiants et professionnels qui ont recours aux données de
télédétection pour la réalisation de projets d’aménagement, de construction, de gestion
de l’environnement, de transpo
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS).It offers an introduction to GIS that does not require prior compu
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS).It offers an introduction to GIS that does not require prior compu
Inverse distance weighting (IDW) is a type of deterministic method for multivariate interpolation with a known scattered set of points. The assigned values to unknown points are calculated with a weighted average of the values available at the known points. This method can also be used to create spatial weights matrices in spatial autocorrelation analyses (e.g. Moran's I). The name given to this type of method was motivated by the weighted average applied, since it resorts to the inverse of the distance to each known point ("amount of proximity") when assigning weights.
Geography (from Greek: γεωγραφία, geographia. Combination of Greek words 'Geo' (The Earth) and 'Graphien' (to describe), literally "earth description") is a field of science devoted to the study of the lands, features, inhabitants, and phenomena of Earth. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be.
Geovisualization or geovisualisation (short for geographic visualization), also known as cartographic visualization, refers to a set of tools and techniques supporting the analysis of geospatial data through the use of interactive visualization. Like the related fields of scientific visualization and information visualization geovisualization emphasizes knowledge construction over knowledge storage or information transmission.
Introduces Google Earth Engine, a cloud-based platform for planetary scale geospatial analysis, explaining its history, core concepts, and real-life applications.
We focus on distinctive data-driven measures of the fate of ongoing epidemics. The relevance of our pursuit is suggested by recent results proving that the short-term temporal evolution of infection spread is described by an epidemicity index related to th ...
2024
, , ,
Whether cardiovascular risk scores geographically aggregate and inform on spatial development of atherosclerotic cardiovascular diseases (ASCVD) remains unknown. Our aim is to determine the spatial distribution of 10-year predicted cardiovascular risk and ...
Informed by longstanding artistic practice, this doctoral thesis approaches entanglements of Swiss coloniality in Brazil and Switzerland under the lens of land, archive, and visuality. The enduring legacies of imperial capitalism in the former Colonia Leop ...