The ocean temperature varies by depth, geographical location and season. Both the temperature and salinity of ocean water differs. Warm surface water is generally saltier than the cooler deep or polar waters; in polar regions, the upper layers of ocean water are cold and fresh. Deep ocean water is cold, salty water found deep below the surface of Earth's oceans. This water has a very uniform temperature, around 0-3 °C. The ocean temperature also depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over while near the poles the temperature in equilibrium with the sea ice is about . There is a continuous circulation of water in the oceans. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. Warm surface currents cool as they move away from the tropics, and the water becomes denser and sinks. The cold water moves back towards the equator as a deep sea current, driven by changes in the temperature and density of the water, before eventually welling up again towards the surface.
Ocean temperature as a term is used either for the temperature in the ocean at any depth, or specifically for the ocean temperatures that are not near the surface (in which case it is synonymous with "deep ocean temperature").
It is clear that the oceans are warming as a result of climate change and this rate of warming is increasing. The upper ocean (above 700 m) is warming fastest, but the warming trend extends throughout the ocean. In 2022, the global ocean was the hottest ever recorded by humans.
The temperature further below the surface is called "ocean temperature" or "deep ocean temperature". Ocean temperatures (more than 20 metres below the surface) also vary by region and time, and they contribute to variations in ocean heat content and ocean stratification.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Understanding process and role of biomineralization (minerals formed by living organisms) in context of Earth's evolution,global chemical cycles, climatic changes and remediation.
Le cours abordera les grandes problématiques technologiques et socio-économiques liées à la transition énergétique, ainsi que les perspectives et barrières à l'établissement d'un système énergétique d
There are many effects of climate change on oceans. One of the main ones is an increase inocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a rise in sea levels. Other effects include ocean acidification, sea ice decline, increased ocean stratification and reductions in oxygen levels. Changes to ocean currents including a weakening of the Atlantic meridional overturning circulation are another important effect. All these changes have knock-on effects which disturb marine ecosystems.
Ocean heat content (OHC) is the energy absorbed and stored by oceans. To calculate the ocean heat content, measurements of ocean temperature at many different locations and depths are required. Integrating the areal density of ocean heat over an ocean basin, or entire ocean, gives the total ocean heat content. Between 1971 and 2018, the rise in OHC accounted for over 90% of Earth’s excess thermal energy from global heating. The main driver of this OHC increase was anthropogenic forcing via rising greenhouse gas emissions.
A marine heatwave (abbreviated as MHW) is a period of abnormally high ocean temperatures relative to the average seasonal temperature in a particular marine region. Marine heatwaves are caused by a variety of factors, including shorter term weather phenomena such as fronts, intraseasonal, annual, or decadal modes like El Niño events, and longer term changes like climate change. Marine heatwaves can lead to severe biodiversity changes such as coral bleaching, sea star wasting disease, harmful algal blooms, and mass mortality of benthic communities.
The oxygen isotope compositions of fossil biocalcites, such as foraminifera, bivalves, brachiopods, and belemnites have allowed for reconstructions of sea surface and deep ocean temperatures throughout the Phanerozoic and constitute the most important reco ...
EPFL2024
,
Objectives The endosymbiosis with Symbiodiniaceae is key to the ecological success of reef-building corals. However, climate change is threatening to destabilize this symbiosis on a global scale. Most studies looking into the response of corals to heat str ...
London2024
Related lectures (32)
Understanding the cooling service provided by vegetation in cities is important to inform urban policy and planning. However, the performance of decision-support tools estimating heat mitigation for urban greening strategies has not been evaluated systemat ...