StoicismStoicism is one of the four major schools of thought established in the Hellenistic period. It was founded in the ancient Agora of Athens by Zeno of Citium around 300 BC. The Stoics believed that the practice of virtue is enough to achieve eudaimonia: a well-lived, flourishing life. The Stoics identified the path to achieving it with a life spent practicing certain virtues in everyday life such as courage or temperance and living in accordance with nature.
Modal μ-calculusIn theoretical computer science, the modal μ-calculus (Lμ, Lμ, sometimes just μ-calculus, although this can have a more general meaning) is an extension of propositional modal logic (with many modalities) by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic. The (propositional, modal) μ-calculus originates with Dana Scott and Jaco de Bakker, and was further developed by Dexter Kozen into the version most used nowadays.
Principle of bivalenceIn logic, the semantic principle (or law) of bivalence states that every declarative sentence expressing a proposition (of a theory under inspection) has exactly one truth value, either true or false. A logic satisfying this principle is called a two-valued logic or bivalent logic. In formal logic, the principle of bivalence becomes a property that a semantics may or may not possess. It is not the same as the law of excluded middle, however, and a semantics may satisfy that law without being bivalent.
Formal verificationIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Philosophical logicUnderstood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic.
Kripke semanticsKripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise').
Dynamic logic (modal logic)In logic, philosophy, and theoretical computer science, dynamic logic is an extension of modal logic capable of encoding properties of computer programs. A simple example of a statement in dynamic logic is which states that if the ground is currently dry and it rains, then afterwards the ground will be wet. The syntax of dynamic logic contains a language of propositions (like "the ground is dry") and a language of actions (like "it rains").
Modal operatorA modal connective (or modal operator) is a logical connective for modal logic. It is an operator which forms propositions from propositions. In general, a modal operator has the "formal" property of being non-truth-functional in the following sense: The truth-value of composite formulae sometimes depend on factors other than the actual truth-value of their components. In the case of alethic modal logic, a modal operator can be said to be truth-functional in another sense, namely, that of being sensitive only to the distribution of truth-values across possible worlds, actual or not.