ArabesqueThe arabesque is a form of artistic decoration consisting of "surface decorations based on rhythmic linear patterns of scrolling and interlacing foliage, tendrils" or plain lines, often combined with other elements. Another definition is "Foliate ornament, used in the Islamic world, typically using leaves, derived from stylised half-palmettes, which were combined with spiralling stems". It usually consists of a single design which can be 'tiled' or seamlessly repeated as many times as desired.
DigonIn geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space. A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol {2}. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2.
AlhambraThe Alhambra (ælˈhæmbrə, aˈlambɾa ; الْحَمْرَاء) is a palace and fortress complex located in Granada, Andalusia, Spain. It is one of the most famous monuments of Islamic architecture and one of the best-preserved palaces of the historic Islamic world, in addition to containing notable examples of Spanish Renaissance architecture. The complex was begun in 1238 by Muhammad I Ibn al-Ahmar, the first Nasrid emir and founder of the Emirate of Granada, the last Muslim state of Al-Andalus.
Vertex (geometry)In geometry, a vertex (: vertices or vertexes) is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. The vertex of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place.
Penrose tilingA Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s.
Rhombitrihexagonal tilingIn geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}. John Conway calls it a rhombihexadeltille. It can be considered a cantellated by Norman Johnson's terminology or an expanded hexagonal tiling by Alicia Boole Stott's operational language. There are three regular and eight semiregular tilings in the plane. There is only one uniform coloring in a rhombitrihexagonal tiling.
Aperiodic tilingAn aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non-periodic tilings. The Penrose tilings are a well-known example of aperiodic tilings. In March 2023, four researchers, David Smith, Joseph Samuel Myers, Craig S. Kaplan, and Chaim Goodman-Strauss, announced the proof that the tile discovered by David Smith is an aperiodic monotile, i.
Regular Polytopes (book)Regular Polytopes is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a third edition by Dover Publications in 1973. The Basic Library List Committee of the Mathematical Association of America has recommended that it be included in undergraduate mathematics libraries. The main topics of the book are the Platonic solids (regular convex polyhedra), related polyhedra, and their higher-dimensional generalizations.
Dissection problemIn geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another). It is usually required that the dissection use only a finite number of pieces. Additionally, to avoid set-theoretic issues related to the Banach–Tarski paradox and Tarski's circle-squaring problem, the pieces are typically required to be well-behaved.
DisphenoidIn geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron. All the solid angles and vertex figures of a disphenoid are the same, and the sum of the face angles at each vertex is equal to two right angles.