Truncated triheptagonal tilingIn geometry, the truncated triheptagonal tiling is a semiregular tiling of the hyperbolic plane. There is one square, one hexagon, and one tetradecagon (14-sides) on each vertex. It has Schläfli symbol of tr{7,3}. There is only one uniform coloring of a truncated triheptagonal tiling. (Naming the colors by indices around a vertex: 123.) Each triangle in this dual tiling, order 3-7 kisrhombille, represent a fundamental domain of the Wythoff construction for the symmetry group [7,3].
Rep-tileIn the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine. A rep-tile is labelled rep-n if the dissection uses n copies.
Fundamental domainGiven a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral.
Pentagonal tilingIn geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not a divisor of 360°, the angle measure of a whole turn. However, regular pentagons can tile the hyperbolic plane with four pentagons around each vertex (or more) and sphere with three pentagons; the latter produces a tiling that is topologically equivalent to the dodecahedron.
Ludwig SchläfliLudwig Schläfli (15 January 1814 – 20 March 1895) was a Swiss mathematician, specialising in geometry and complex analysis (at the time called function theory) who was one of the key figures in developing the notion of higher-dimensional spaces. The concept of multidimensionality is pervasive in mathematics, has come to play a pivotal role in physics, and is a common element in science fiction. Ludwig spent most of his life in Switzerland. He was born in Grasswil (now part of Seeberg), his mother's hometown.
Sphinx tilingIn geometry, the sphinx tiling is a tessellation of the plane using the "sphinx", a pentagonal hexiamond formed by gluing six equilateral triangles together. The resultant shape is named for its reminiscence to the Great Sphinx at Giza. A sphinx can be dissected into any square number of copies of itself, some of them s, and repeating this process leads to a non-periodic tiling of the plane. The sphinx is therefore a rep-tile (a self-replicating tessellation).
Tiling puzzleTiling puzzles are puzzles involving two-dimensional packing problems in which a number of flat shapes have to be assembled into a larger given shape without overlaps (and often without gaps). Some tiling puzzles ask you to dissect a given shape first and then rearrange the pieces into another shape. Other tiling puzzles ask you to dissect a given shape while fulfilling certain conditions. The two latter types of tiling puzzles are also called dissection puzzles.
NonagonIn geometry, a nonagon (ˈnɒnəgɒn) or enneagon (ˈɛniəɡɒn) is a nine-sided polygon or 9-gon. The name nonagon is a prefix hybrid formation, from Latin (nonus, "ninth" + gonon), used equivalently, attested already in the 16th century in French nonogone and in English from the 17th century. The name enneagon comes from Greek enneagonon (εννεα, "nine" + γωνον (from γωνία = "corner")), and is arguably more correct, though less common than "nonagon". A regular nonagon is represented by Schläfli symbol {9} and has internal angles of 140°.
Rhombitriheptagonal tilingIn geometry, the rhombitriheptagonal tiling is a semiregular tiling of the hyperbolic plane. At each vertex of the tiling there is one triangle and one heptagon, alternating between two squares. The tiling has Schläfli symbol rr{7, 3}. It can be seen as constructed as a rectified triheptagonal tiling, r{7,3}, as well as an expanded heptagonal tiling or expanded order-7 triangular tiling. The dual tiling is called a deltoidal triheptagonal tiling, and consists of congruent kites.
Mathematics and artMathematics and art are related in a variety of ways. Mathematics has itself been described as an art motivated by beauty. Mathematics can be discerned in arts such as music, dance, painting, architecture, sculpture, and textiles. This article focuses, however, on mathematics in the visual arts. Mathematics and art have a long historical relationship. Artists have used mathematics since the 4th century BC when the Greek sculptor Polykleitos wrote his Canon, prescribing proportions conjectured to have been based on the ratio 1: for the ideal male nude.