Rocket propellantRocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse).
Nuclear pulse propulsionNuclear pulse propulsion or external pulsed plasma propulsion is a hypothetical method of spacecraft propulsion that uses nuclear explosions for thrust. It originated as Project Orion with support from DARPA, after a suggestion by Stanislaw Ulam in 1947. Newer designs using inertial confinement fusion have been the baseline for most later designs, including Project Daedalus and Project Longshot. Los Alamos National Laboratory Calculations for a potential use of this technology were made at the laboratory from and toward the close of the 1940s to the mid-1950s.
Magnetic sailA magnetic sail is a proposed method of spacecraft propulsion that uses a static magnetic field to deflect a plasma wind of charged particles radiated by the Sun or a Star thereby transferring momentum to accelerate or decelerate a spacecraft. Most approaches require little to no propellant and thus are a form of Field propulsion. A magnetic sail could also thrust against a planetary ionosphere or magnetosphere.
Fusion rocketA fusion rocket is a theoretical design for a rocket driven by fusion propulsion that could provide efficient and sustained acceleration in space without the need to carry a large fuel supply. The design requires fusion power technology beyond current capabilities, and much larger and more complex rockets. Fusion nuclear pulse propulsion is one approach to using nuclear fusion energy to provide propulsion. Fusion's main advantage is its very high specific impulse, while its main disadvantage is the (likely) large mass of the reactor.
Tsiolkovsky rocket equationThe classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity can thereby move due to the conservation of momentum. It is credited to the Russian scientist Konstantin Tsiolkovsky (Константи́н Эдуа́рдович Циолко́вский) who independently derived it and published it in 1903, although it had been independently derived and published by the British mathematician William Moore in 1810, and later published in a separate book in 1813.
Interstellar travelInterstellar travel is the hypothetical travel of spacecraft from one star system, solitary star, or planetary system to another. Interstellar travel is expected to prove much more difficult than interplanetary spaceflight due to the vast difference in the scale of the involved distances. Whereas the distance between any two planets in the Solar System is less than 30 astronomical units (AU), stars are typically separated by hundreds of thousands of AU, causing these distances to typically be expressed instead in light-years.
Space colonizationSpace colonization (also called space settlement or extraterrestrial colonization) is the use of outer space or celestial bodies other than Earth for permanent habitation or as extraterrestrial territory. The inhabitation and territorial use of extraterrestrial space has been proposed, for example, for space settlements or extraterrestrial mining enterprises. To date, no permanent space settlement other than temporary space habitats have been set up, nor has any extraterrestrial territory or land been legally claimed.