Concept

Zermelo set theory

Summary
Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text (translated into English) and original numbering. The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set. Later versions of set theory often assume that all objects are sets so there are no urelements and there is no need for the unary predicate. AXIOM I. Axiom of extensionality (Axiom der Bestimmtheit) "If every element of a set M is also an element of N and vice versa ... then M N. Briefly, every set is determined by its elements." AXIOM II. Axiom of elementary sets (Axiom der Elementarmengen) "There exists a set, the null set, ∅, that contains no element at all. If a is any object of the domain, there exists a set {a} containing a and only a as an element. If a and b are any two objects of the domain, there always exists a set {a, b} containing as elements a and b but no object x distinct from them both." See Axiom of pairs. AXIOM III. Axiom of separation (Axiom der Aussonderung) "Whenever the propositional function –(x) is defined for all elements of a set M, M possesses a subset M' containing as elements precisely those elements x of M for which –(x) is true." AXIOM IV. Axiom of the power set (Axiom der Potenzmenge) "To every set T there corresponds a set T' , the power set of T, that contains as elements precisely all subsets of T ." AXIOM V.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.