**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Theoretical computer science

Summary

Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory.
It is difficult to circumscribe the theoretical areas precisely. The ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description:
History
History of computer science
While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved.
Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of neural networks and parallel distrib

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (41)

Related publications (100)

Loading

Loading

Loading

Related courses (48)

ME-454: Modelling and optimization of energy systems

The goal of the lecture is to present and apply techniques for the modelling and the thermo-economic optimisation of industrial process and energy systems. The lecture covers the problem statement, the solving methods for the simulation and the single and multi-objective optimisation problems.

ME-474: Numerical flow simulation

This course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Matlab, and a commercial software is used for more complex problems.

PHYS-512: Statistical physics of computation

This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and cavity methods, message passings algorithms, and analysis of the related phase transitions.

Related concepts (127)

Computer science

Computer science is the study of computation, information, and automation. Computer science spans theoretical disciplines (such as algorithms, theory of computation, and information theory) to applied

Computational complexity theory

In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each ot

Turing machine

A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it

Related units (26)

Related lectures (53)

Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also been numerous works that study combinatorial problems with submodular objective functions. This is motivated by their natural diminishing returns property which is useful in real-world applications. The thesis at hand is concerned with the study of streaming and matching problems with submodular functions.Firstly, motivated by developing robust algorithms, we propose a new adversarial injections model, in which the input is ordered randomly, but an adversary may inject misleading elements at arbitrary positions. We study the maximum matching problem and cardinality constrained monotone submodular maximization. We show that even under this seemingly powerful adversary, it is possible to break the barrier of 1/2 for both these problems in the streaming setting. Our main result is a novel streaming algorithm that computes a 0.55-approximation for cardinality constrained monotone submodular maximization.In the second part of the thesis, we study the problem of matroid intersection in the semi-streaming setting. Our main result is a (2 + e)-approximate semi-streaming algorithm for weighted matroid inter- section improving upon the previous best guarantee of 4 + e. While our algorithm is based on the local ratio technique, its analysis differs from the related problem of weighted maximum matching and uses the concept of matroid kernels. We are also able to generalize our results to work for submodular functions by adapting ideas from a recent result by Levin and Wajc (SODA'21) on submodular maximization subject to matching constraints.Finally, we study the submodular Santa Claus problem in the restricted assignment case. The submodular Santa Claus problem was introduced in a seminal work by Goemans, Harvey, Iwata, and Mirrokni (SODA'09) as an application of their structural result. In the mentioned problem n unsplittable resources have to be assigned to m players, each with a monotone submodular utility function fi. The goal is to maximize mini fi(Si) where S1, . . . , Sm is a partition of the resources. The result by Goemans et al. implies a polynomial time O(n1/2+e)-approximation algorithm. In the restricted assignment case, each player is given a set of desired resources Gi and the individual valuation functions are defined as fi(S)= f(SnGi). OurmainresultisaO(loglog(n))-approximation algorithm for the problem. Our proof is inspired by the approach of Bansal and Srividenko (STOC'06) to the Santa Claus problem. Com- pared to the more basic linear setting, the introduction of submodularity requires a much more involved analysis and several new ideas.

The present work is a Master semester project created collaterally to the mechanical engineering major (SGM) at the Swiss federal institute of technology (EPFL). The project aim is the comprehension, assessment and optimization of an HVAC energy system which is located on a cruise ship. To approach the subject, a first analysis of the real field data from the ship is made. Then, an approximation of the energy demand of the HVAC ystem on board is carried out using Matlab. The real consumed HVAC energy is compared with the theoretical results. Based on these results, optimization options regarding the HVAC systems and their possible implementation are discussed.

2014Constraint Satisfaction Problems (CSPs) are ubiquitous in computer science. Many problems, ranging from resource allocation and scheduling to fault diagnosis and design, involve constraint satisfaction as an essential component. A CSP is given by a set of variables and constraints on small subsets of these variables. It is solved by finding assignments of values to the variables such that all constraints are satisfied. In its most general form, a CSP is combinatorial and complex. In this thesis, we consider constraint satisfaction problems with variables in continuous, numerical domains. Contrary to most existing techniques, which focus on computing a single optimal solution, we address the problem of computing a compact representation of the space of all solutions that satisfy the constraints. This has the advantage that no optimization criterion has to be formulated beforehand, and that the space of possibilities can be explored systematically. In certain applications, such as diagnosis and design, these advantages are crucial. In consistency techniques, the solution space is represented by labels assigned to individual variables or combinations of variables. When the labeling is globally consistent, each label contains only those values or combinations of values which appear in at least one solution. This kind of labeling is a compact, sound and complete representation of the solution space, and can be combined with other reasoning methods. In practice, computing a globally consistent labeling is too complex. This is usually tackled in two ways. One way is to enforce consistencies locally, using propagation algorithms. This prunes the search space and hence reduces the subsequent search effort. The other way is to identify simplifying properties which guarantee that global consistency can be enforced tractably using local propagation algorithms. When constraints are represented by mathematical expressions, implementing local consistency algorithms is difficult because it requires tools for solving arbitrary systems of equations. In this thesis, we propose to approximate feasible solution regions by 2k-trees, thus providing a means of combining constraints logically rather than numerically. This representation, commonly used in computer vision and image processing, avoids using complex mathematical tools. We propose simple and stable algorithms for computing labels of arbitrary degrees of consistency using this representation. For binary constraints, it is known that simplifying convexity properties reduces the complexity of solving a CSP. These properties guarantee that local degrees of consistency are sufficient to ensure global consistency. We show how, in continuous domains, these results can be generalized to ternary and in fact arbitrary n-ary constraints. This leads to polynomial-time algorithms for computing globally consistent labels for a large class of constraint satisfaction problems with continuous variables. We describe and justify our representation of constraints and our consistency algorithms. We also give a complete analysis of the theoretical results we present. Finally, the developed techniques are illustrated using practical examples.