Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Objectives To evaluate the performance of automatic deep learning (DL) algorithm for size, mass, and volume measurements in predicting prognosis of lung adenocarcinoma (LUAD) and compared with manual measurements. Methods A total of 542 patients with clini ...
As modern machine learning continues to achieve unprecedented benchmarks, the resource demands to train these advanced models grow drastically. This has led to a paradigm shift towards distributed training. However, the presence of adversariesâwhether ma ...
Explainable AI (XAI) methods aim to describe the decision process of deep neural networks. Early XAI methods produced visual explanations, whereas more recent techniques generate multimodal explanations that include textual information and visual represent ...
The ubiquity of distributed machine learning (ML) in sensitive public domain applications calls for algorithms that protect data privacy, while being robust to faults and adversarial behaviors. Although privacy and robustness have been extensively studied ...
The Joint Photographic Experts Group (JPEG) AI learning-based image coding system is an ongoing joint standardization effort between International Organization for Standardization (ISO), International Electrotechnical Commission (IEC), and International Te ...
Integrating various reinforcements into 3D concrete printing (3DCP) is an efficient method to satisfy critical requirements for structural applications. This paper explores an explainable ensemble machine learning (EML) method to predict the bond failure m ...
Stereo confidence estimation aims to estimate the reliability of the estimated disparity by stereo matching. Different from the previous methods that exploit the limited input modality, we present a novel method that estimates confidence map of an initial ...
In this thesis, we explore techniques for addressing the communication bottleneck in data-parallel distributed training of deep learning models. We investigate algorithms that either reduce the size of the messages that are exchanged between workers, or th ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...
This paper presents an acoustic impedance control architecture for an electroacoustic absorber combining both feedforward and feedback microphone-based strategies on a current-driven loudspeaker. Feedforward systems enable good performance for direct imped ...