Related courses (32)
MICRO-614: Electrochemical nano-bio-sensing and bio/CMOS interfaces
Main aim of the course is to introduce, in designing of modern wearable and implantable devices, the new concept of co-design three system' layers: Bio for Specificity, Nano for Sensitivity, and CMOS
MICRO-330: Sensors
Principes physiques et électronique utilisés dans les capteurs. Applications des capteurs.
EE-594: Smart sensors for IoT
This lecture provides insights in the design and technologies of Internet-of-Things sensor nodes, with focus on low power technologies. The lectures alternate every two weeks between sensing technolog
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
EE-382: Electrical machines (for ME)
L'objectif de ce cours est d'acquérir les connaissances de base liées aux machines électriques (conversion électromécanique). Le cours porte sur le circuit magnétique, le transformateur, les machines
EE-576: Electromagnetic compatibility
In this lecture, students will get the basic knowledge on electromagnetic compatibility.
EE-511: Sensors in medical instrumentation
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
EE-407: Fundamentals of electrical circuits and systems II
This course provides an introduction to the theory and analysis methods of electrical circuits.
PHYS-407: Frontiers in nanosciences
The students understand the relevant experimental and theoretical concepts of nanoscale science. The course covers basic concepts like quantum size effects and their characterization techniques, and h
MICRO-470: Scaling laws in micro & nanosystems
This class adresses scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.