Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics.
A drawing of a graph or network diagram is a pictorial representation of the vertices and edges of a graph. This drawing should not be confused with the graph itself: very different layouts can correspond to the same graph. In the abstract, all that matters is which pairs of vertices are connected by edges. In the concrete, however, the arrangement of these vertices and edges within a drawing affects its understandability, usability, fabrication cost, and aesthetics. The problem gets worse if the graph changes over time by adding and deleting edges (dynamic graph drawing) and the goal is to preserve the user's mental map.
Graphs are frequently drawn as node–link diagrams in which the vertices are represented as disks, boxes, or textual labels and the edges are represented as line segments, polylines, or curves in the Euclidean plane. Node–link diagrams can be traced back to the 14th-16th century works of Pseudo-Lull which were published under the name of Ramon Llull, a 13th century polymath. Pseudo-Lull drew diagrams of this type for complete graphs in order to analyze all pairwise combinations among sets of metaphysical concepts.
In the case of directed graphs, arrowheads form a commonly used graphical convention to show their orientation; however, user studies have shown that other conventions such as tapering provide this information more effectively. Upward planar drawing uses the convention that every edge is oriented from a lower vertex to a higher vertex, making arrowheads unnecessary.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph , denoted by , and the minimum degree of a graph, denoted by , are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.
In the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by , , and . One way of proving Fáry's theorem is to use mathematical induction.
In topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
Translation elongation plays an important role in regulating protein concentrations in the cell, and dysregulation of this process has been linked to several human diseases. In this study, we use data from ribo-seq experiments to model ribosome dwell times ...
2024
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...