Concept

Erdős cardinal

In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by . A cardinal κ is called α-Erdős if for every function f : κ< ω → {0, 1}, there is a set of order type α that is homogeneous for f . In the notation of the partition calculus, κ is α-Erdős if κ(α) → (α)< ω. The existence of zero sharp implies that the constructible universe L satisfies "for every countable ordinal α, there is an α-Erdős cardinal". In fact, for every indiscernible κ, Lκ satisfies "for every ordinal α, there is an α-Erdős cardinal in Coll(ω, α)" (the Levy collapse to make α countable). However, the existence of an ω1-Erdős cardinal implies existence of zero sharp. If f is the satisfaction relation for L (using ordinal parameters), then the existence of zero sharp is equivalent to there being an ω1-Erdős ordinal with respect to f . Thus, the existence of zero sharp implies that the axiom of constructibility is false. If κ is α-Erdős, then it is α-Erdős in every transitive model satisfying "α is countable.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.