Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by . A cardinal κ is called α-Erdős if for every function f : κ< ω → {0, 1}, there is a set of order type α that is homogeneous for f . In the notation of the partition calculus, κ is α-Erdős if κ(α) → (α)< ω. The existence of zero sharp implies that the constructible universe L satisfies "for every countable ordinal α, there is an α-Erdős cardinal". In fact, for every indiscernible κ, Lκ satisfies "for every ordinal α, there is an α-Erdős cardinal in Coll(ω, α)" (the Levy collapse to make α countable). However, the existence of an ω1-Erdős cardinal implies existence of zero sharp. If f is the satisfaction relation for L (using ordinal parameters), then the existence of zero sharp is equivalent to there being an ω1-Erdős ordinal with respect to f . Thus, the existence of zero sharp implies that the axiom of constructibility is false. If κ is α-Erdős, then it is α-Erdős in every transitive model satisfying "α is countable.