ApeirogonIn geometry, an apeirogon () or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries. Given a point A0 in a Euclidean space and a translation S, define the point Ai to be the point obtained from i applications of the translation S to A0, so Ai = Si(A0).
HendecagonIn geometry, a hendecagon (also undecagon or endecagon) or 11-gon is an eleven-sided polygon. (The name hendecagon, from Greek hendeka "eleven" and –gon "corner", is often preferred to the hybrid undecagon, whose first part is formed from Latin undecim "eleven".) A regular hendecagon is represented by Schläfli symbol {11}. A regular hendecagon has internal angles of 147.27 degrees (=147 degrees). The area of a regular hendecagon with side length a is given by As 11 is not a Fermat prime, the regular hendecagon is not constructible with compass and straightedge.
PentadecagonIn geometry, a pentadecagon or pentakaidecagon or 15-gon is a fifteen-sided polygon. A regular pentadecagon is represented by Schläfli symbol {15}. A regular pentadecagon has interior angles of 156°, and with a side length a, has an area given by As 15 = 3 × 5, a product of distinct Fermat primes, a regular pentadecagon is constructible using compass and straightedge: The following constructions of regular pentadecagons with given circumcircle are similar to the illustration of the proposition XVI in Book IV of Euclid's Elements.
OctagramIn geometry, an octagram is an eight-angled star polygon. The name octagram combine a Greek numeral prefix, octa-, with the Greek suffix -gram. The -gram suffix derives from γραμμή (grammḗ) meaning "line". In general, an octagram is any self-intersecting octagon (8-sided polygon). The regular octagram is labeled by the Schläfli symbol {8/3}, which means an 8-sided star, connected by every third point. These variations have a lower dihedral, Dih4, symmetry: The symbol Rub el Hizb is a Unicode glyph ۞ at U+06DE.
Density (polytope)In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through.
ZonogonIn geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations. A regular polygon is a zonogon if and only if it has an even number of sides. Thus, the square, regular hexagon, and regular octagon are all zonogons. The four-sided zonogons are the square, the rectangles, the rhombi, and the parallelograms.
TetradecagonIn geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon. A regular tetradecagon has Schläfli symbol {14} and can be constructed as a quasiregular truncated heptagon, t{7}, which alternates two types of edges. The area of a regular tetradecagon of side length a is given by As 14 = 2 × 7, a regular tetradecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis with use of the angle trisector, or with a marked ruler, as shown in the following two examples.
Decagram (geometry)In geometry, a decagram is a 10-point star polygon. There is one regular decagram, containing the vertices of a regular decagon, but connected by every third point. Its Schläfli symbol is {10/3}. The name decagram combines a numeral prefix, deca-, with the Greek suffix -gram. The -gram suffix derives from γραμμῆς (grammēs) meaning a line. For a regular decagram with unit edge lengths, the proportions of the crossing points on each edge are as shown below. Decagrams have been used as one of the decorative motifs in girih tiles.
MonogonIn geometry, a monogon, also known as a henagon, is a polygon with one edge and one vertex. It has Schläfli symbol {1}. In Euclidean geometry a monogon is a degenerate polygon because its endpoints must coincide, unlike any Euclidean line segment. Most definitions of a polygon in Euclidean geometry do not admit the monogon. In spherical geometry, a monogon can be constructed as a vertex on a great circle (equator). This forms a dihedron, {1,2}, with two hemispherical monogonal faces which share one 360° edge and one vertex.
Enneagram (geometry)In geometry, an enneagram (🟙 U+1F7D9) is a nine-pointed plane figure. It is sometimes called a nonagram, nonangle, or enneagon. The word 'enneagram' combines the numeral prefix ennea- with the Greek suffix -gram. The gram suffix derives from γραμμῆς (grammēs) meaning a line. A regular enneagram is a 9-sided star polygon. It is constructed using the same points as the regular enneagon, but the points are connected in fixed steps. Two forms of regular enneagram exist: One form connects every second point and is represented by the Schläfli symbol {9/2}.