In geometry, an apeirogon () or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries. Given a point A0 in a Euclidean space and a translation S, define the point Ai to be the point obtained from i applications of the translation S to A0, so Ai = Si(A0). The set of vertices Ai with i any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter. A regular apeirogon can be defined as a partition of the Euclidean line E1 into infinitely many equal-length segments. It generalizes the regular n-gon, which may be defined as a partition of the circle S1 into finitely many equal-length segments. An abstract polytope is a partially ordered set P (whose elements are called faces) with properties modeling those of the inclusions of faces of convex polytopes. The rank (or dimension) of an abstract polytope is determined by the length of the maximal ordered chains of its faces, and an abstract polytope of rank n is called an abstract n-polytope. For abstract polytopes of rank 2, this means that: A) the elements of the partially ordered set are sets of vertices with either zero vertex (the empty set), one vertex, two vertices (an edge), or the entire vertex set (a two-dimensional face), ordered by inclusion of sets; B) each vertex belongs to exactly two edges; C) the undirected graph formed by the vertices and edges is connected. An abstract polytope is called an abstract apeirotope if it has infinitely many elements; an abstract 2-apeirotope is called an abstract apeirogon. In an abstract polytope, a flag is a collection of one face of each dimension, all incident to each other (that is, comparable in the partial order); an abstract polytope is called regular if it has symmetries (structure-preserving permutations of its elements) that take any flag to any other flag.