Concept

Ultrametric space

Summary
In mathematics, an ultrametric space is a metric space in which the triangle inequality is strengthened to . Sometimes the associated metric is also called a non-Archimedean metric or super-metric. An ultrametric on a set M is a real-valued function (where R denote the real numbers), such that for all x, y, z ∈ M: d(x, y) ≥ 0; d(x, y) = d(y, x) (symmetry); d(x, x) = 0; if d(x, y) = 0 then x = y; d(x, z) ≤ max {d(x, y), d(y, z) } (strong triangle inequality or ultrametric inequality). An ultrametric space is a pair (M, d) consisting of a set M together with an ultrametric d on M, which is called the space's associated distance function (also called a metric). If d satisfies all of the conditions except possibly condition 4 then d is called an ultrapseudometric on M. An ultrapseudometric space is a pair (M, d) consisting of a set M and an ultrapseudometric d on M. In the case when M is an Abelian group (written additively) and d is generated by a length function (so that ), the last property can be made stronger using the Krull sharpening to: with equality if . We want to prove that if , then the equality occurs if . Without loss of generality, let us assume that . This implies that . But we can also compute . Now, the value of cannot be , for if that is the case, we have contrary to the initial assumption. Thus, , and . Using the initial inequality, we have and therefore . From the above definition, one can conclude several typical properties of ultrametrics. For example, for all , at least one of the three equalities or or holds. That is, every triple of points in the space forms an isosceles triangle, so the whole space is an isosceles set. Defining the (open) ball of radius centred at as , we have the following properties: Every point inside a ball is its center, i.e. if then . Intersecting balls are contained in each other, i.e. if is non-empty then either or . All balls of strictly positive radius are both open and closed sets in the induced topology. That is, open balls are also closed, and closed balls (replace with ) are also open.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.