Downside risk is the financial risk associated with losses. That is, it is the risk of the actual return being below the expected return, or the uncertainty about the magnitude of that difference. Risk measures typically quantify the downside risk, whereas the standard deviation (an example of a deviation risk measure) measures both the upside and downside risk. Specifically, downside risk can be measured either with downside beta or by measuring lower semi-deviation. The statistic below-target semi-deviation or simply target semi-deviation (TSV) has become the industry standard. Downside risk was first modeled by Roy (1952), who assumed that an investor's goal was to minimize his/her risk. This mean-semivariance, or downside risk, model is also known as “safety-first” technique, and only looks at the lower standard deviations of expected returns which are the potential losses. This is about the same time Harry Markowitz was developing mean-variance theory. Even Markowitz, himself, stated that "semi-variance is the more plausible measure of risk" than his mean-variance theory. Later in 1970, several focus groups were performed where executives from eight industries were asked about their definition of risk resulting in semi-variance being a better indicator than ordinary variance. Then, through a theoretical analysis of capital market values, Hogan and Warren demonstrated that 'the fundamental structure of the "capital-asset pricing model is retained when standard semideviation is substituted for standard deviation to measure portfolio risk."' This shows that the CAPM can be modified by incorporating downside beta, which measures downside risk, in place of regular beta to correctly reflect what people perceive as risk. Since the early 1980s, when Dr. Frank Sortino developed formal definition of downside risk as a better measure of investment risk than standard deviation, downside risk has become the industry standard for risk management. It is important to distinguish between downside and upside risk because security distributions are non-normal and non-symmetrical.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.