SuperkeyIn the relational data model a superkey is a set of attributes that uniquely identifies each tuple of a relation. Because superkey values are unique, tuples with the same superkey value must also have the same non-key attribute values. That is, non-key attributes are functionally dependent on the superkey. The set of all attributes is always a superkey (the trivial superkey). Tuples in a relation are by definition unique, with duplicates removed after each operation, so the set of all attributes is always uniquely valued for every tuple.
Foreign keyA foreign key is a set of attributes in a table that refers to the primary key of another table. The foreign key links these two tables. Another way to put it: In the context of relational databases, a foreign key is a set of attributes subject to a certain kind of inclusion dependency constraints, specifically a constraint that the tuples consisting of the foreign key attributes in one relation, R, must also exist in some other (not necessarily distinct) relation, S, and furthermore that those attributes must also be a candidate key in S.
Composite keyIn database design, a composite key is a candidate key that consists of two or more attributes (table columns) that together uniquely identify an entity occurrence (table row). A compound key is a composite key for which each attribute that makes up the key is a foreign key in its own right. Composite keys have advantages similar to that of a natural key as it is often composed of multiple natural key attributes.
Primary keyIn the relational model of databases, a primary key is a specific choice of a minimal set of attributes (columns) that uniquely specify a tuple (row) in a relation (table). Informally, a primary key is "which attributes identify a record," and in simple cases constitute a single attribute: a unique ID. More formally, a primary key is a choice of candidate key (a minimal superkey); any other candidate key is an alternate key.
Relational modelThe relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.
Surrogate keyA surrogate key (or synthetic key, pseudokey, entity identifier, factless key, or technical key) in a database is a unique identifier for either an entity in the modeled world or an object in the database. The surrogate key is not derived from application data, unlike a natural (or business) key. There are at least two definitions of a surrogate: Surrogate (1) – Hall, Owlett and Todd (1976) A surrogate represents an entity in the outside world. The surrogate is internally generated by the system but is nevertheless visible to the user or application.
Database normalizationDatabase normalization or database normalisation (see spelling differences) is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model. Normalization entails organizing the columns (attributes) and tables (relations) of a database to ensure that their dependencies are properly enforced by database integrity constraints.
Relational databaseA relational database is a (most commonly digital) database based on the relational model of data, as proposed by E. F. Codd in 1970. A system used to maintain relational databases is a relational database management system (RDBMS). Many relational database systems are equipped with the option of using SQL (Structured Query Language) for querying and updating the database. The term "relational database" was first defined by E. F. Codd at IBM in 1970. Codd introduced the term in his research paper "A Relational Model of Data for Large Shared Data Banks".