Concept

Substitution électrophile aromatique

La substitution électrophile aromatique (ou SEA, voire SEAr) est une réaction organique au cours de laquelle un atome, en règle générale d'hydrogène, ou un groupe d'atomes, fixé à un cycle aromatique, est remplacé par un groupe électrophile. Cette réaction, la principale dans le groupe des substitutions électrophiles, est très importante en chimie organique, tant dans l'industrie qu'en laboratoire. Elle permet de préparer des composés aromatiques substitués par une grande variété de groupes fonctionnels suivant le bilan : ArH + EX → ArE + HX avec ArH un composé aromatique et E un groupe électrophile. La première étape du mécanisme est une addition au cours de laquelle le composé réagit avec un doublet électronique du cycle aromatique. Cette étape nécessite généralement une catalyse par un acide de Lewis. Cette addition conduit à la formation d'un carbocation cyclohexadiénil connu sous le nom d’intermédiaire de Wheland (ou , ou encore cation arénium). Ce carbocation est instable, puisqu'il correspond à la fois à la présence d'une charge sur la molécule et à une perte d'aromaticité. Il est néanmoins stabilisé par mésomérie : la charge est en réalité délocalisée sur plusieurs atomes du cycle aromatique. Au cours de la seconde étape, un atome d'hydrogène lié au cycle ayant subi l'addition électrophile part en tant qu'. Le doublet électronique qui était utilisé pour la liaison C-H permet alors au système de retrouver son aromaticité. Ce chapitre détaille les principales substitutions électrophiles aromatiques utilisées dans l'industrie et en laboratoire. Pour chacune d'entre elles, le mécanisme réactionnel est donné dans le cas particulier du benzène. Ce mécanisme est similaire pour d'autres types de composés aromatiques, aux conditions opératoires (température, solvant...) près. La nitration aromatique est une substitution électrophile aromatique particulière au cours de laquelle un atome d'hydrogène lié à un atome de carbone du cycle aromatique est remplacé par un groupe nitro -NO2 pour former du nitrobenzène.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (12)
CH-234: Organic functions and reactions II
To develop basic understanding of the reactivity of aromatic and heteroaromatic compounds. To develop a knowledge of a class of pericyclic reactions. To apply them in the context of the synthesis.
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
BIO-110: Bio-organic chemistry
The aim of the course is to provide a chemical understanding and intuition to decipher and predict chemical processes in living systems.
Afficher plus