**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Black hole thermodynamics

Summary

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.
Overview
The second law of thermodynamics requires that black holes have entropy. If black holes carried no entropy, it would be possible to violate the second law by throwing mass into the black hole. The increase of the entropy of the black hole more than compensates for the decrease of the entropy carried by the object that was swallowed.
In 1972, Jacob Bekenstein conjectured that black holes should have an entropy, where by the same year, he proposed no-hair theorems.
In 1973 Bekenstein suggested

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (4)

Related people (1)

Loading

Loading

Loading

Related concepts (29)

Black hole

A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predi

String theory

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these s

Hawking radiation

Hawking radiation is the theoretical thermal black body radiation released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the

Related courses (8)

Ce cours est une introduction à la physique stellaire. On y expose les notions indispensables à la compréhension du fonctionnement d'une étoile et à la construction de modèles de structure interne et d'évolution stellaires. On donne aussi des clés d'interprétation des spectres stellaires.

This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.

The course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra. More advanced topics include introduction to the semiclassical methods and Feynman path integral.

Related lectures (10)

Related units (2)

We use complex semiclassical method to compute scattering amplitudes of a point particle in dilaton gravity with a boundary. This model has nonzero minimal black hole mass M-cr. We find that at energies below M-cr the particle trivially scatters off the boundary with unit probability. At higher energies the scattering amplitude is exponentially suppressed. The corresponding semiclassical solution is interpreted as formation of an intermediate black hole decaying into the final-state particle. Relating the suppression of the scattering probability to the number of the intermediate black hole states, we find an expression for the black hole entropy consistent with thermodynamics. In addition, we fix the constant part of the entropy which is left free by the thermodynamic arguments. We rederive this result by modifying the standard Euclidean entropy calculation.

The precise analog of the theta-quantization ambiguity of Yang-Mills theory exists for the real SU(2) connection formulation of general relativity. As in the former case theta labels representations of large gauge transformations, which are super-selection sectors in loop quantum gravity. We show that unless theta=0, the (kinematical) geometric operators such as area and volume are not well defined on spin network states. More precisely the intersection of their domain with the dense set Cyl in the kinematical Hilbert space H of loop quantum gravity is empty. The absence of a well defined notion of area operator acting on spin network states seems at first in conflict with the expected finite black hole entropy. However, we show that the black hole (isolated) horizon area--which in contrast to kinematical area is a (Dirac) physical observable--is indeed well defined, and quantized so that the black hole entropy is proportional to the area. The effect of theta is negligible in the semiclassical limit where proportionality to area holds.

2008Michele Redi, Sergey Sibiryakov

We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z(N) discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not imply a large number of species. Thus, there emerges a potentially wide class of new theories that address the hierarchy problem by lowering the gravitational cutoff due to the existence of large Z(1032)-type symmetries.

2008