Machine translationMachine translation is use of either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches to translation of text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. History of machine translation The origins of machine translation can be traced back to the work of Al-Kindi, a ninth-century Arabic cryptographer who developed techniques for systemic language translation, including cryptanalysis, frequency analysis, and probability and statistics, which are used in modern machine translation.
Question answeringQuestion answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing (NLP) that is concerned with building systems that automatically answer questions that are posed by humans in a natural language. A question-answering implementation, usually a computer program, may construct its answers by querying a structured database of knowledge or information, usually a knowledge base. More commonly, question-answering systems can pull answers from an unstructured collection of natural language documents.
Relationship extractionA relationship extraction task requires the detection and classification of semantic relationship mentions within a set of artifacts, typically from text or XML documents. The task is very similar to that of information extraction (IE), but IE additionally requires the removal of repeated relations (disambiguation) and generally refers to the extraction of many different relationships. The concept of relationship extraction was first introduced during the 7th Message Understanding Conference in 1998.
Concept miningConcept mining is an activity that results in the extraction of concepts from artifacts. Solutions to the task typically involve aspects of artificial intelligence and statistics, such as data mining and text mining. Because artifacts are typically a loosely structured sequence of words and other symbols (rather than concepts), the problem is nontrivial, but it can provide powerful insights into the meaning, provenance and similarity of documents.
PolysemyPolysemy (pəˈlɪsᵻmi or ˈpɒlᵻˌsiːmi; ) is the capacity for a sign (e.g. a symbol, a morpheme, a word, or a phrase) to have multiple related meanings. For example, a word can have several word senses. Polysemy is distinct from monosemy, where a word has a single meaning. Polysemy is distinct from homonymy—or homophony—which is an accidental similarity between two or more words (such as bear the animal, and the verb bear); whereas homonymy is a mere linguistic coincidence, polysemy is not.
Lexical semanticsLexical semantics (also known as lexicosemantics), as a subfield of linguistic semantics, is the study of word meanings. It includes the study of how words structure their meaning, how they act in grammar and compositionality, and the relationships between the distinct senses and uses of a word. The units of analysis in lexical semantics are lexical units which include not only words but also sub-words or sub-units such as affixes and even compound words and phrases. Lexical units include the catalogue of words in a language, the lexicon.
Semantic lexiconA semantic lexicon is a digital dictionary of words labeled with semantic classes so associations can be drawn between words that have not previously been encountered. Semantic lexicons are built upon semantic networks, which represent the semantic relations between words. The difference between a semantic lexicon and a semantic network is that a semantic lexicon has definitions for each word, or a "gloss". Semantic lexicons are made up of lexical entries. These entries are not orthographic, but semantic, eliminating issues of homonymy and polysemy.