Concept

Second-order logic

In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. First-order logic can quantify over individuals, but not over properties. That is, we can take an atomic sentence like Cube(b) and obtain a quantified sentence by replacing the name with a variable and attaching a quantifier: ∃x Cube(x) However, we cannot do the same with the predicate. That is, the following expression ∃P P(b) is not a sentence of first-order logic, but this is a legitimate sentence of second-order logic. Here, P is a predicate variable and is semantically a set of individuals. As a result, second-order logic has greater expressive power than first-order logic. For example, there is no way in first-order logic to identify the set of all cubes and tetrahedrons. But the existence of this set can be asserted in second-order logic as ∃P ∀x (Px ↔ (Cube(x) ∨ Tet(x))). We can then assert properties of this set. For instance, the following says that the set of all cubes and tetrahedrons does not contain any dodecahedrons: ∀P (∀x (Px ↔ (Cube(x) ∨ Tet(x))) → ¬ ∃x (Px ∧ Dodec(x))). Second-order quantification is especially useful because it gives the ability to express reachability properties.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (9)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-483: Gödel and recursivity
Gödel incompleteness theorems and mathematical foundations of computer science
MATH-318: Set theory
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Show more
Related lectures (47)
Linear MM SE Estimation
Covers the principles of linear MM SE estimation and the minimization of errors in linear regression.
Predicate Logic: Quiz Answers Analysis
Analyzes quiz answers on predicate logic, covering quantifiers, implications, and negations.
Predicate Logic: More on Quantifiers
Explores quantifiers with finite domains, uniqueness quantifier, composite statements, variable binding, and validity in logic.
Show more
Related publications (39)

Transportation-based functional ANOVA and PCA for covariance operators

Victor Panaretos, Yoav Zemel, Valentina Masarotto

We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...
Inst Mathematical Statistics-Ims2024

The Complexity of Checking Non-Emptiness in Symbolic Tree Automata

Rodrigo Raya

We study the satisfiability problem of symbolic tree automata and decompose it into the satisfiability problem of the existential first-order theory of the input characters and the existential monadic second-order theory of the indices of the accepted word ...
2023

Decision Procedures for Power Structures

Rodrigo Raya

We study the decision problem for the existential fragment of the theory of power structures. We prove complexity results that parallel the decidability results of Feferman-Vaught for the theories of product structures thereby showing that the construction ...
EPFL2023
Show more
Related concepts (42)
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Foundations of mathematics
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (set, function, geometrical figure, number, etc.
Compactness theorem
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally not effective) method for constructing models of any set of sentences that is finitely consistent. The compactness theorem for the propositional calculus is a consequence of Tychonoff's theorem (which says that the product of compact spaces is compact) applied to compact Stone spaces, hence the theorem's name.
Show more
Related MOOCs (3)
Parallel programming
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
Parallel programming
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
Parallel programming
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.