Concept

Second-order logic

Résumé
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. First-order logic can quantify over individuals, but not over properties. That is, we can take an atomic sentence like Cube(b) and obtain a quantified sentence by replacing the name with a variable and attaching a quantifier: ∃x Cube(x) However, we cannot do the same with the predicate. That is, the following expression ∃P P(b) is not a sentence of first-order logic, but this is a legitimate sentence of second-order logic. Here, P is a predicate variable and is semantically a set of individuals. As a result, second-order logic has greater expressive power than first-order logic. For example, there is no way in first-order logic to identify the set of all cubes and tetrahedrons. But the existence of this set can be asserted in second-order logic as ∃P ∀x (Px ↔ (Cube(x) ∨ Tet(x))). We can then assert properties of this set. For instance, the following says that the set of all cubes and tetrahedrons does not contain any dodecahedrons: ∀P (∀x (Px ↔ (Cube(x) ∨ Tet(x))) → ¬ ∃x (Px ∧ Dodec(x))). Second-order quantification is especially useful because it gives the ability to express reachability properties.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.