The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions. The Thirring model is given by the Lagrangian density where is the field, g is the coupling constant, m is the mass, and , for , are the two-dimensional gamma matrices. This is the unique model of (1+1)-dimensional, Dirac fermions with a local (self-)interaction. Indeed, since there are only 4 independent fields, because of the Pauli principle, all the quartic, local interactions are equivalent; and all higher power, local interactions vanish. (Interactions containing derivatives, such as , are not considered because they are non-renormalizable.) The correlation functions of the Thirring model (massive or massless) verify the Osterwalder–Schrader axioms, and hence the theory makes sense as a quantum field theory. The massless Thirring model is exactly solvable in the sense that a formula for the -points field correlation is known. After it was introduced by Walter Thirring, many authors tried to solve the massless case, with confusing outcomes. The correct formula for the two and four point correlation was finally found by K. Johnson; then C. R. Hagen and B. Klaiber extended the explicit solution to any multipoint correlation function of the fields. The mass spectrum of the model and the scattering matrix was explicitly evaluated by Bethe Ansatz. An explicit formula for the correlations is not known. J. I. Cirac, P. Maraner and J. K. Pachos applied the massive Thirring model to the description of optical lattices. In one space dimension and one time dimension the model can be solved by the Bethe Ansatz. This helps one calculate exactly the mass spectrum and scattering matrix. Calculation of the scattering matrix reproduces the results published earlier by Alexander Zamolodchikov. The paper with the exact solution of Massive Thirring model by Bethe Ansatz was first published in Russian. Ultraviolet renormalization was done in the frame of the Bethe Ansatz.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.