Summary
A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity. In genetics, a maternal effect occurs when the phenotype of an organism is determined by the genotype of its mother. For example, if a mutation is maternal effect recessive, then a female homozygous for the mutation may appear phenotypically normal, however her offspring will show the mutant phenotype, even if they are heterozygous for the mutation. Maternal effects often occur because the mother supplies a particular mRNA or protein to the oocyte, hence the maternal genome determines whether the molecule is functional. Maternal supply of mRNAs to the early embryo is important, as in many organisms the embryo is initially transcriptionally inactive. Because of the inheritance pattern of maternal effect mutations, special genetic screens are required to identify them. These typically involve examining the phenotype of the organisms one generation later than in a conventional (zygotic) screen, as their mothers will be potentially homozygous for maternal effect mutations that arise. A Drosophila melanogaster oocyte develops in an egg chamber in close association with a set of cells called nurse cells.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.