Oyster farming is an aquaculture (or mariculture) practice in which oysters are bred and raised mainly for their pearls, shells and inner organ tissue, which is eaten. Oyster farming was practiced by the ancient Romans as early as the 1st century BC on the Italian peninsula and later in Britain for export to Rome. The French oyster industry has relied on aquacultured oysters since the late 18th century.
Oyster farming was practiced by the ancient Romans as early as the 1st century BC on the Italian peninsula. With the Barbarian invasions the oyster farming in the Mediterranean and the Atlantic came to an end.
In fact, the Romans were the very first to cultivate Oysters. The Roman engineer Sergius Orata is known for his innovative ways of breeding and commercializing oysters. He did this by cultivating the mollusk with a system that could control the water levels.
In 1852 Monsieur de Bon started to re-seed the oyster beds by collecting the oyster spawn using makeshift catchers. An important step to the modern oyster farming was the oyster farm built by Hyacinthe Boeuf in the Ile de Ré. After obtaining the rights to a part of the coast he built a wall to make a reservoir and to break the strength of the current. Some time later the wall was covered with spat coming spontaneously from the sea which gave 2000 baby oysters per square metre.
The Ancient Romans started farming the Thames Estuary in Hampton-On-Sea, or Kent, England from the 1st Century to approximately the 4th Century. They would export the oysters back to Rome and throughout the Roman Empire. Then on July 25, 1864, The Herne Bay Hampton and Recuiver Oyster Fishery Company moved into the area to start oyster farming. In the 1870s the oyster trade suffered from overfishing and sent the industry into a decline. This caused the government of England to make the 1877 Act to solve the problem. This act prevented the sale of dredged oysters from the months of June through August, and freshwater pond oyster sales from between May and August.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Perkinsus marinus is a species of alveolate belonging to the phylum Perkinsozoa. It is similar to a dinoflagellate. It is known as a prevalent pathogen of oysters, causing massive mortality in oyster populations. The disease it causes is known as dermo or perkinsosis, and is characterized by the degradation of oyster tissues. The genome of this species has been sequenced. The species originally was named Dermocystidium marinum by Mackin, Owen and Collier in 1950. P. marinus is a protozoan of the protist superphylum Alveolata, the alveolates.
Haplosporidium nelsoni is a pathogen of oysters that originally caused oyster populations to experience high mortality rates in the 1950s, and still is quite prevalent today. The disease caused by H. nelsoni is also known as MSX (multinucleated unknown or multinuclear sphere X). MSX is thought to have been introduced by experimental transfers of the Pacific oyster (Crassostrea gigas), which is resistant to this disease. MSX was first described in 1957, when it caused serious mortalities in Delaware Bay.
The Pacific oyster, Japanese oyster, or Miyagi oyster (Magallana gigas), is an oyster native to the Pacific coast of Asia. It has become an introduced species in North America, Australia, Europe, and New Zealand. The genus Magallana is named for the Portuguese explorer Ferdinand Magellan and its specific epithet gígās is from the Greek for "giant". It was previously placed in the genus Crassostrea; from the Latin crass meaning "thick", ostrea meaning "oyster", and Crassostrea gigas is considered by part of the scientific community to be the proper denomination as an accepted alternative in WoRMS, The shell of M.
Pacific oyster mortality syndrome affects juveniles of Crassostrea gigas oysters and threatens the sustainability of commercial and natural stocks of this species. Vibrio crassostreae has been repeatedly isolated from diseased animals and the majority of t ...
Geophysical Research Abstracts, 9, 01643, 1607-7962/gra/EGU2007-A-01643 ...
2007
,
Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring dur ...