Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics.
Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions. However, all versions keep the core design of constructive logic using dependent types.
Martin-Löf designed the type theory on the principles of mathematical constructivism. Constructivism requires any existence proof to contain a "witness". So, any proof of "there exists a prime greater than 1000" must identify a specific number that is both prime and greater than 1000. Intuitionistic type theory accomplished this design goal by internalizing the BHK interpretation. An interesting consequence is that proofs become mathematical objects that can be examined, compared, and manipulated.
Intuitionistic type theory's type constructors were built to follow a one-to-one correspondence with logical connectives. For example, the logical connective called implication () corresponds to the type of a function (). This correspondence is called the Curry–Howard isomorphism. Previous type theories had also followed this isomorphism, but Martin-Löf's was the first to extend it to predicate logic by introducing dependent types.
Intuitionistic type theory has 3 finite types, which are then composed using 5 different type constructors. Unlike set theories, type theories are not built on top of a logic like Frege's. So, each feature of the type theory does double duty as a feature of both math and logic.
If you are unfamiliar with type theory and know set theory, a quick summary is: Types contain terms just like sets contain elements. Terms belong to one and only one type. Terms like and compute ("reduce") down to canonical terms like 4.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computer science and logic, a dependent type is a type whose definition depends on a value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, F*, Epigram, and Idris, dependent types help reduce bugs by enabling the programmer to assign types that further restrain the set of possible implementations.
In logic, extensionality, or extensional equality, refers to principles that judge objects to be equal if they have the same external properties. It stands in contrast to the concept of intensionality, which is concerned with whether the internal definitions of objects are the same. Consider the two functions f and g mapping from and to natural numbers, defined as follows: To find f(n), first add 5 to n, then multiply by 2. To find g(n), first multiply n by 2, then add 10.
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general, type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation, a common one is Thierry Coquand's Calculus of Inductive Constructions.
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Model the behavior of elastic, viscoelastic, and inelastic solids both in the infinitesimal and finite-deformation regimes.
The course covers the principles of chemical kinetics, including differential rate laws, derivation of exact and approximate integral rate laws for common elementary and composite reactions, fundament
Explores fracture mechanics, crack growth, and the weakest link theory, emphasizing the statistical distribution of crack sizes and the significance of the largest crack in material failure.
The increasing interest towards the concept of the so called ‘escape from the city’, fueled by the recent pandemic, prompt us to put the holiday villa at the center of research attention. In the collective imagination the villa is a manifesto of 'the good ...
Capture calculus is an extension of System Fsub that tracks free variables of terms in their type, allowing one to represent capabilities while limiting their scope. While previous calculi had mechanized soundness proofs, the latest version, namely the box ...
2023
In the collective imagination the villa is a manifesto of 'the good life’, often representing for architects a laboratory of experimentation and style and an exception in their portfolio. The fate of the villa in contemporary architecture and research cult ...