Résumé
Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions. However, all versions keep the core design of constructive logic using dependent types. Martin-Löf designed the type theory on the principles of mathematical constructivism. Constructivism requires any existence proof to contain a "witness". So, any proof of "there exists a prime greater than 1000" must identify a specific number that is both prime and greater than 1000. Intuitionistic type theory accomplished this design goal by internalizing the BHK interpretation. An interesting consequence is that proofs become mathematical objects that can be examined, compared, and manipulated. Intuitionistic type theory's type constructors were built to follow a one-to-one correspondence with logical connectives. For example, the logical connective called implication () corresponds to the type of a function (). This correspondence is called the Curry–Howard isomorphism. Previous type theories had also followed this isomorphism, but Martin-Löf's was the first to extend it to predicate logic by introducing dependent types. Intuitionistic type theory has 3 finite types, which are then composed using 5 different type constructors. Unlike set theories, type theories are not built on top of a logic like Frege's. So, each feature of the type theory does double duty as a feature of both math and logic. If you are unfamiliar with type theory and know set theory, a quick summary is: Types contain terms just like sets contain elements. Terms belong to one and only one type. Terms like and compute ("reduce") down to canonical terms like 4.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.