In telecommunications, cable Internet access, shortened to cable Internet, is a form of broadband Internet access which uses the same infrastructure as cable television. Like digital subscriber line and fiber to the premises services, cable Internet access provides network edge connectivity (last mile access) from the Internet service provider to an end user. It is integrated into the cable television infrastructure analogously to DSL which uses the existing telephone network. Cable TV networks and telecommunications networks are the two predominant forms of residential Internet access. Recently, both have seen increased competition from fiber deployments, wireless, and mobile networks.
Cable modem
Broadband cable Internet access requires a cable modem at the customer's premises and a cable modem termination system (CMTS) at a cable operator facility, typically a cable television headend. The two are connected via coaxial cable to a hybrid fibre-coaxial (HFC) network. While access networks are referred to as last-mile technologies, cable Internet systems can typically operate where the distance between the modem and the termination system is up to . If the HFC network is large, the cable modem termination system can be grouped into hubs for efficient management. Several standards have been used for cable internet, but the most common is DOCSIS.
A cable modem at the customer is connected via coaxial cable to an optical node, and thus into an HFC network. An optical node serves many modems as the modems are connected with coaxial cable to a coaxial cable "trunk" via distribution "taps" on the trunk, which then connects to the node, possibly using amplifiers along the trunk. The optical node converts the Radiofrequency (RF) signal in the coaxial cable trunk into light pulses to be sent through optical fibers in the HFC network. At the other end of the network, an optics platform or headend platform converts the light pulses into RF signals in coaxial cables again using transmitter and receiver modules, and the cable modem termination system (CMTS) connects to these coaxial cables.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A modulator-demodulator or modem is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more carrier wave signals to encode digital information, while the receiver demodulates the signal to recreate the original digital information. The goal is to produce a signal that can be transmitted easily and decoded reliably.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
A cable modem termination system (CMTS, also called a CMTS Edge Router) is a piece of equipment, typically located in a cable company's headend or hubsite, which is used to provide high speed data services, such as cable Internet or Voice over Internet Protocol, to cable subscribers. A CMTS provides many of the same functions provided by the DSLAM in a DSL system. In order to provide high speed data services, a cable company will connect its headend to the Internet via very high capacity data links to a network service provider.
The European Roadmap to Fusion Electricity (Federici et al., 2018) [1] details the path to complete within the next three decades the DEMOnstration power plant, DEMO, aiming to a net gain of Energy Q=40. The 2018 DEMO baseline considers a 2 GW tokamak devi ...
Model compression techniques have lead to a reduction of size and number of computations of Deep Learning models. However, techniques such as pruning mostly lack of a real co-optimization with hardware platforms. For instance, implementing unstructured pru ...
Nowadays mobile phones have become indispensable, as they have been endowed with many of the capabilities that a user was able to achieve previously with the help of PCs only. Among the functions that mobile phones perform we identify audio and video calls ...