In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. In the context of Riemann integrals (or, equivalently, Darboux integrals), this typically involves unboundedness, either of the set over which the integral is taken or of the integrand (the function being integrated), or both. It may also involve bounded but not closed sets or bounded but not continuous functions. While an improper integral is typically written symbolically just like a standard definite integral, it actually represents a limit of a definite integral or a sum of such limits; thus improper integrals are said to converge or diverge. If a regular definite integral (which may retronymically be called a proper integral) is worked out as if it is improper, the same answer will result.
In the simplest case of a real-valued function of a single variable integrated in the sense of Riemann (or Darboux) over a single interval, improper integrals may be in any of the following forms:
where is undefined or discontinuous somewhere on
The first three forms are improper because the integrals are taken over an unbounded interval. (They may be improper for other reasons, as well, as explained below.) Such an integral is sometimes described as being of the "first" type or kind if the integrand otherwise satisfies the assumptions of integration. Integrals in the fourth form that are improper because has a vertical asymptote somewhere on the interval may be described as being of the "second" type or kind. Integrals that combine aspects of both types are sometimes described as being of the "third" type or kind.
In each case above, the improper integral must be rewritten using one or more limits, depending on what is causing the integral to be improper. For example, in case 1, if is continuous on the entire interval , then
The limit on the right is taken to be the definition of the integral notation on the left.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An introduction to methods of harmonic analysis.
Covers convergence of Fourier series, Hilbert transform, Calderon-Zygmund theory, Fourier restriction, and applications to PDE.
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.
In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved. These terms are sometimes useful in mathematical research and teaching, but there is no strict mathematical definition of pathological or well-behaved. A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere.
In the branch of mathematics known as real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral.
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
We give an extension of Le's stochastic sewing lemma. The stochastic sewing lemma proves convergence in Lm of Riemann type sums ∑[s,t]∈πAs,t for an adapted two-parameter stochastic process A, under certain conditions on the moments o ...
Fluid antenna systems (FAS) are an emerging technology that promises a significant diversity gain even in the smallest spaces. It consists of a freely moving antenna in a small linear space to pick up the strongest received signal. Previous works in the li ...