Résumé
En mathématiques, lintégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock). Dans la pratique, on est amené à effectuer une étude de convergence d'intégrale impropre : lorsqu'on intègre jusqu'à une borne infinie ; lorsqu'on intègre jusqu'à une borne en laquelle la fonction n'admet pas de limite finie ; lorsqu'on englobe un point de non-définition dans l'intervalle d'intégration. Dans chaque cas, on évaluera l'intégrale définie comme une fonction d'une des deux bornes, et on prendra la limite de la fonction obtenue lorsque l'argument tend vers la valeur de la borne. L'intégrale impropre partage un certain nombre de propriétés élémentaires avec l'intégrale définie. Elle ne permet pas d'écrire des résultats d'interversion limite-intégrale avec les théorèmes d'interversion de convergence uniforme. Par contre, il existe un théorème d'interversion limite-intégrale adapté aux intégrales impropres : c'est le théorème de convergence dominée. Soit (où a est réel mais b peut être infini) une fonction continue ou, plus généralement, localement intégrable, c'est-à-dire intégrable sur tout compact de [a, b[. Si la limite existe et est finie, on appelle cette limite intégrale impropre de f sur [a, b[. De la même manière, soit une fonction localement intégrable. Si la limite existe et est finie, on appelle cette limite intégrale impropre de f sur ]a, b]. Dans les deux cas, on peut noter cette limite et l'on précise éventuellement si l'intégrale est impropre pour la borne a ou pour la borne b.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.