Related courses (19)
MATH-438: Statistical genetics
This course will cover the major topics in statistical genetics.
BIO-441: Nutrition: from molecules to health
The course addresses methods/technologies to study how nutrition affects biological and pathophysiological processes. It provides an overview of molecular phenotyping of individuals and key aspects to
BIO-205: Cellular and molecular biology I
The course covers the regulation of gene expression, which translates the information contained in the genome into function, by adjusting the levels and activities of mRNAs and proteins to the needs o
PHYS-302: Biophysics : physics of biological systems
Understand and use the results and methods of population genetics, population dynamics, network theory, and reaction network dynamics to analyze and predict the behavior of living systems
CH-412: Frontiers in chemical biology
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
BIO-617: Practical - Gönczy Lab
Give students a feel for some of the approaches pursued to understand mechanisms underlying cell division processes, primarily in C. elegans embryos but also in other systems, including human cells in
HUM-216: Philosophy of biology
Identifier et comprendre les débats et problèmes centraux en philosophie de la biologie, notamment autour de l'évolution biologique et de l'émergence du vivant. Evaluer et comparer les arguments cruci
ENV-103: Biology
This course will cover the fundamental principles governing life and the living world. Topics will include the diversity of living organisms, cellular biology, genetics, evolution, and ecology. This c
BIO-105: Cellular biology and biochemistry for engineers
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
BIO-471: Cancer biology I
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.