In coding theory, the repetition code is one of the most basic linear error-correcting codes. In order to transmit a message over a noisy channel that may corrupt the transmission in a few places, the idea of the repetition code is to just repeat the message several times. The hope is that the channel corrupts only a minority of these repetitions. This way the receiver will notice that a transmission error occurred since the received data stream is not the repetition of a single message, and moreover, the receiver can recover the original message by looking at the received message in the data stream that occurs most often.
Because of the bad error correcting performance coupled with the low code rate (ratio between useful information symbols and actual transmitted symbols), other error correction codes are preferred in most cases. The chief attraction of the repetition code is the ease of implementation.
In the case of a binary repetition code, there exist two code words - all ones and all zeros - which have a length of . Therefore, the minimum Hamming distance of the code equals its length . This gives the repetition code an error correcting capacity of (i.e. it will correct up to errors in any code word).
If the length of a binary repetition code is odd, then it's a perfect code. The binary repetition code of length n is equivalent to the (n,1)-Hamming code.
Consider a binary repetition code of length 3. The user wants to transmit the information bits 101. Then the encoding maps each bit either to the all ones or all zeros code word, so we get the 111 000 111, which will be transmitted.
Let's say three errors corrupt the transmitted bits and the received sequence is 111 010 100. Decoding is usually done by a simple majority decision for each code word. That lead us to 100 as the decoded information bits, because in the first and second code word occurred less than two errors, so the majority of the bits are correct. But in the third code word two bits are corrupted, which results in an erroneous information bit, since two errors lie above the error correcting capacity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
The Hadamard code is an error-correcting code named after Jacques Hadamard that is used for error detection and correction when transmitting messages over very noisy or unreliable channels. In 1971, the code was used to transmit photos of Mars back to Earth from the NASA space probe Mariner 9. Because of its unique mathematical properties, the Hadamard code is not only used by engineers, but also intensely studied in coding theory, mathematics, and theoretical computer science.
In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.
The recently introduced polar codes constitute a breakthrough in coding theory due to their capacity-achieving property. This goes hand in hand with a quasilinear construction, encoding, and successive cancellation list decoding procedures based on the Plo ...
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
Previous works on age of information and erasure channels have dealt with specific models and computed the average age or average peak age for certain settings. In this paper, given a source that produces a letter every T-s seconds and an erasure channel t ...