In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.
Although the title of this article specifies analytic functions, there are results for more general functions of a complex variable as well.
There are several notations describing infinite compositions, including the following:
Forward compositions:
Backward compositions:
In each case convergence is interpreted as the existence of the following limits:
For convenience, set Fn(z) = F1,n(z) and Gn(z) = G1,n(z).
One may also write and
Many results can be considered extensions of the following result:
Let {fn} be a sequence of functions analytic on a simply-connected domain S. Suppose there exists a compact set Ω ⊂ S such that for each n, fn(S) ⊂ Ω.
Additional theory resulting from investigations based on these two theorems, particularly Forward Compositions Theorem, include location analysis for the limits obtained in the following reference. For a different approach to Backward Compositions Theorem, see the following reference.
Regarding Backward Compositions Theorem, the example f2n(z) = 1/2 and f2n−1(z) = −1/2 for S = {z : |z| < 1} demonstrates the inadequacy of simply requiring contraction into a compact subset, like Forward Compositions Theorem.
For functions not necessarily analytic the Lipschitz condition suffices:
Results involving entire functions include the following, as examples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach-Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922.
In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981. IFS fractals, as they are normally called, can be of any number of dimensions, but are commonly computed and drawn in 2D. The fractal is made up of the union of several copies of itself, each copy being transformed by a function (hence "function system").
In mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: with the circle‐shaped symbol of function composition.
Isotropic chemical shifts and quadrupole coupling parameters of Se-77 and Ge-73 nuclei in GeSe2 and GeSe4 glasses are determined through density-functional NMR calculations on amorphous model structures generated by ab initio molecular dynamics. The compar ...
American Chemical Society2011
, ,
Self-assembled monolayer-protected nanoparticles are promising candidates for applications, such as sensing and drug delivery, in which the molecular ligands' interactions with the surrounding environment play a crucial role. We recently showed that, when ...
2008
Hermiticity is an essential requirement of a MEMS package for a device to work properly. Hermeticity also must be preserved during the operations following packaging, during which the package bond should not remelt. Bonding temperature is limited however t ...