In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981.
IFS fractals, as they are normally called, can be of any number of dimensions, but are commonly computed and drawn in 2D. The fractal is made up of the union of several copies of itself, each copy being transformed by a function (hence "function system"). The canonical example is the Sierpiński triangle. The functions are normally contractive, which means they bring points closer together and make shapes smaller. Hence, the shape of an IFS fractal is made up of several possibly-overlapping smaller copies of itself, each of which is also made up of copies of itself, ad infinitum. This is the source of its self-similar fractal nature.
Formally, an iterated function system is a finite set of contraction mappings on a complete metric space. Symbolically,
is an iterated function system if each is a contraction on the complete metric space .
Hutchinson showed that, for the metric space , or more generally, for a complete metric space , such a system of functions has a unique nonempty compact (closed and bounded) fixed set S. One way of constructing a fixed set is to start with an initial nonempty closed and bounded set S0 and iterate the actions of the fi, taking Sn+1 to be the union of the images of Sn under the fi; then taking S to be the closure of the limit . Symbolically, the unique fixed (nonempty compact) set has the property
The set S is thus the fixed set of the Hutchinson operator defined for via
The existence and uniqueness of S is a consequence of the contraction mapping principle, as is the fact that
for any nonempty compact set in . (For contractive IFS this convergence takes place even for any nonempty closed bounded set ). Random elements arbitrarily close to S may be obtained by the "chaos game," described below.
Recently it was shown that the IFSs of non-contractive type (i.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th
Les étudiants perfectionnent leurs connaissances en Java et les mettent en pratique en réalisant un projet de taille conséquente. Ils apprennent à utiliser et à mettre en œuvre les principaux types de
In mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: with the circle‐shaped symbol of function composition.
The Barnsley fern is a fractal named after the British mathematician Michael Barnsley who first described it in his book Fractals Everywhere. He made it to resemble the black spleenwort, Asplenium adiantum-nigrum. The fern is one of the basic examples of self-similar sets, i.e. it is a mathematically generated pattern that can be reproducible at any magnification or reduction. Like the Sierpinski triangle, the Barnsley fern shows how graphically beautiful structures can be built from repetitive uses of mathematical formulas with computers.
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions.
K-means is one of the fundamental unsupervised data clustering and machine learning methods. It has been well studied over the years: parallelized, approximated, and optimized for different cases and applications. With increasingly higher parallelism leadi ...
2023
,
Self-exciting point processes, widely used to model arrival phenomena in nature and society, are often difficult to identify. The estimation becomes even more challenging when arrivals are recorded only as bin counts on a finite partition of the observatio ...
2023
, ,
The present invention concerns a method for determining an estimated value for different parameters on the basis of one or more acquired signals obtained during a Magnetic Resonance Fingerprinting measurement. The method includes using a correction model a ...