Concept

Equidiagonal quadrilateral

In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics, where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types. Examples of equidiagonal quadrilaterals include the isosceles trapezoids, rectangles and squares. Among all quadrilaterals, the shape that has the greatest ratio of its perimeter to its diameter is an equidiagonal kite with angles π/3, 5π/12, 5π/6, and 5π/12. A convex quadrilateral is equidiagonal if and only if its Varignon parallelogram, the parallelogram formed by the midpoints of its sides, is a rhombus. An equivalent condition is that the bimedians of the quadrilateral (the diagonals of the Varignon parallelogram) are perpendicular. A convex quadrilateral with diagonal lengths and and bimedian lengths and is equidiagonal if and only if The area K of an equidiagonal quadrilateral can easily be calculated if the length of the bimedians m and n are known. A quadrilateral is equidiagonal if and only if This is a direct consequence of the fact that the area of a convex quadrilateral is twice the area of its Varignon parallelogram and that the diagonals in this parallelogram are the bimedians of the quadrilateral. Using the formulas for the lengths of the bimedians, the area can also be expressed in terms of the sides a, b, c, d of the equidiagonal quadrilateral and the distance x between the midpoints of the diagonals as Other area formulas may be obtained from setting p = q in the formulas for the area of a convex quadrilateral. A parallelogram is equidiagonal if and only if it is a rectangle, and a trapezoid is equidiagonal if and only if it is an isosceles trapezoid. The cyclic equidiagonal quadrilaterals are exactly the isosceles trapezoids. There is a duality between equidiagonal quadrilaterals and orthodiagonal quadrilaterals: a quadrilateral is equidiagonal if and only if its Varignon parallelogram is orthodiagonal (a rhombus), and the quadrilateral is orthodiagonal if and only if its Varignon parallelogram is equidiagonal (a rectangle).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (15)
Elementary Operations in Geometry
Explores elementary operations in geometry, focusing on angles and the power of a point with respect to a circle.
Projective Geometry: Fundamentals and Applications
Explores the fundamentals of projective geometry and its practical applications in solving geometric problems.
Elementary Operations in Geometry
Explores exterior angles in triangles, inscribed angles in circles, and a point's power relative to a circle.
Show more
Related publications (2)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.