Processor (computing)In computing and computer science, a processor or processing unit is an electrical component (digital circuit) that performs operations on an external data source, usually memory or some other data stream. It typically takes the form of a microprocessor, which can be implemented on a single metal–oxide–semiconductor integrated circuit chip. In the past, processors were constructed using multiple individual vacuum tubes, multiple individual transistors, or multiple integrated circuits. Today, processors use built-in transistors.
OMAPThe OMAP (Open Multimedia Applications Platform) family, developed by Texas Instruments, was a series of /video processors. They are proprietary system on chips (SoCs) for portable and mobile multimedia applications. OMAP devices generally include a general-purpose ARM architecture processor core plus one or more specialized co-processors. Earlier OMAP variants commonly featured a variant of the Texas Instruments TMS320 series digital signal processor.
Shared memoryIn computer science, shared memory is memory that may be simultaneously accessed by multiple programs with an intent to provide communication among them or avoid redundant copies. Shared memory is an efficient means of passing data between programs. Depending on context, programs may run on a single processor or on multiple separate processors. Using memory for communication inside a single program, e.g. among its multiple threads, is also referred to as shared memory.
Dynamic frequency scalingDynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems (e.g.
Dynamic voltage scalingIn computer architecture, dynamic voltage scaling is a power management technique in which the voltage used in a component is increased or decreased, depending upon circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic voltage scaling to decrease voltage is known as undervolting. Undervolting is done in order to conserve power, particularly in laptops and other mobile devices, where energy comes from a battery and thus is limited, or in rare cases, to increase reliability.
Zen 3Zen 3 is the codename for a CPU microarchitecture by AMD, released on November 5, 2020. It is the successor to Zen 2 and uses TSMC's 7 nm process for the chiplets and GlobalFoundries's 14 nm process for the I/O die on the server chips and 12 nm for desktop chips. Zen 3 powers Ryzen 5000 mainstream desktop processors (codenamed "Vermeer") and Epyc server processors (codenamed "Milan"). Zen 3 is supported on motherboards with 500 series chipsets; 400 series boards also saw support on select B450 / X470 motherboards with certain BIOSes.
Mini PCA nettop (or miniature PC, Mini PC or Smart Micro PC) is a small-sized, inexpensive, low-power, legacy-free desktop computer designed for basic tasks such as web browsing, accessing web-based applications, document processing, and audio/video playback. The word nettop is a portmanteau of network and desktop. It is the desktop counterpart of the netbook. Modern ( 2020) mini PCs or small form factor PCs can be much more powerful, being equipped with high-end laptop components or mid-range desktop components.
Westmere (microarchitecture)Westmere (formerly Nehalem-C) is the code name given to the 32 nm die shrink of Nehalem. While sharing the same CPU sockets, Westmere included Intel HD Graphics, while Nehalem did not. The first Westmere-based processors were launched on January 7, 2010, by Intel Corporation. The Westmere architecture has been available under the Intel brands of Core i3, Core i5, Core i7, Pentium, Celeron and Xeon. Westmere's feature improvements from Nehalem, as reported: Native six-core (Gulftown) and ten-core (Westmere-EX) processors.
Cache hierarchyCache hierarchy, or multi-level caches, refers to a memory architecture that uses a hierarchy of memory stores based on varying access speeds to cache data. Highly requested data is cached in high-speed access memory stores, allowing swifter access by central processing unit (CPU) cores. Cache hierarchy is a form and part of memory hierarchy and can be considered a form of tiered storage. This design was intended to allow CPU cores to process faster despite the memory latency of main memory access.
Meltdown (security vulnerability)Meltdown is one of the two original transient execution CPU vulnerabilities (the other being Spectre). Meltdown affects Intel x86 microprocessors, IBM POWER processors, and some ARM-based microprocessors. It allows a rogue process to read all memory, even when it is not authorized to do so. Meltdown affects a wide range of systems. At the time of disclosure (2018), this included all devices running any but the most recent and patched versions of iOS, Linux, macOS, or Windows.