Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems (e.g. after poor overclocking).
Dynamic frequency scaling almost always appear in conjunction with dynamic voltage scaling, since higher frequencies require higher supply voltages for the digital circuit to yield correct results. The combined topic is known as dynamic voltage and frequency scaling (DVFS).
Processor throttling is also known as "automatic underclocking". Automatic overclocking (boosting) is also technically a form of dynamic frequency scaling, but it's relatively new and usually not discussed with throttling.
Processor power dissipation#Sources
The dynamic power (switching power) dissipated by a chip is C·V2·A·f, where C is the capacitance being switched per clock cycle, V is voltage, A is the Activity Factor indicating the average number of switching events per clock cycle by the transistors in the chip (as a unitless quantity) and f is the clock frequency.
Voltage is therefore the main determinant of power usage and heating. The voltage required for stable operation is determined by the frequency at which the circuit is clocked, and can be reduced if the frequency is also reduced. Dynamic power alone does not account for the total power of the chip, however, as there is also static power, which is primarily because of various leakage currents. Due to static power consumption and asymptotic execution time it has been shown that the energy consumption of software shows convex energy behavior, i.e., there exists an optimal CPU frequency at which energy consumption is minimized.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the fundamentals of digital integrated circuits and the technology aspects from a designers perspective. It focuses mostly on transistor level, but discusses also the extension t
Maîtriser des blocs fonctionnels nécessitant un plus haut niveau d'abstraction. Réalisation de fonctions électroniques de haut niveau exploitant les amplificateurs opérationnels.
This course deals with the analysis, design, and optimization of CMOS analog circuits, emphasizing low-power solutions required in a broad range of applications (e.g., IoT, wearables, Biosensors ...).
Explores parallelism in programming, emphasizing trade-offs between programmability and performance, and introduces shared memory parallel programming using OpenMP.
Explores the significance of power and energy in VLSI design, covering topics like power reduction, energy efficiency, and voltage scaling.
Covers the fundamentals of VLSI design, focusing on circuit optimization and complex system composition.
Low-power electronics are electronics, such as notebook processors, that have been designed to use less electric power than usual, often at some expense. In the case of notebook processors, this expense is processing power; notebook processors usually consume less power than their desktop counterparts, at the expense of lower processing power. watch The earliest attempts to reduce the amount of power required by an electronic device were related to the development of the wristwatch.
Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, reduce heat emission, and it may also increase the system's stability, lifespan/reliability and compatibility. Underclocking may be implemented by the factory, but many computers and components may be underclocked by the end user.
Power management is a feature of some electrical appliances, especially copiers, computers, computer CPUs, computer GPUs and computer peripherals such as monitors and printers, that turns off the power or switches the system to a low-power state when inactive. In computing this is known as PC power management and is built around a standard called ACPI, this supersedes APM. All recent computers have ACPI support.
Enterprises collect data in large volumes and leverage them to drive numerous concurrent decisions and business processes. Their teams deploy multiple applications that often operate concurrently on the same data and infrastructure but have widely differen ...
In traditional power delivery networks, the on-chip supply voltage is provided by board-level converters. Due to the significant distance between the converter and the load, variations in the load current are not effectively managed, producing a significan ...
Piscataway2024
, ,
A frequency scaling governor is critical for the performance management of cloud servers, as it enhances energy efficiency and helps to control operational temperatures, thereby ensuring system reliability. However, our in-depth analysis of the application ...