Concept

Track transition curve

Summary
A transition curve (also, spiral easement or, simply, spiral) is a spiral-shaped length of highway or railroad track that is used between sections having different profiles and radii, such as between straightaways (tangents) and curves, or between two different curves. In the horizontal plane, the radius of a transition curve varies continually over its length between the disparate radii of the sections that it joins—for example, from infinite radius at a tangent to the nominal radius of a smooth curve. The resulting spiral provides a gradual, eased transition, preventing undesirable sudden, abrupt changes in lateral (centripetal) acceleration that would otherwise occur without a transition curve. Similarly, on highways, transition curves allow drivers to change steering gradually when entering or exiting curves. Transition curves also serve as a transition in the vertical plane, whereby the elevation of the inside or outside of the curve is lowered or raised to reach the nominal amount of bank for the curve. On early railroads, because of the low speeds and wide-radius curves employed, the surveyors were able to ignore any form of easement, but during the 19th century, as speeds increased, the need for a track curve with gradually increasing curvature became apparent. Rankine's 1862 "Civil Engineering" cites several such curves, including an 1828 or 1829 proposal based on the "curve of sines" by William Gravatt, and the curve of adjustment by William Froude around 1842 approximating the elastic curve. The actual equation given in Rankine is that of a cubic curve, which is a polynomial curve of degree 3, at the time also known as a cubic parabola. In the UK, only from 1845, when legislation and land costs began to constrain the laying out of rail routes and tighter curves were necessary, were the principles beginning to be applied in practice. The 'true spiral', whose curvature is exactly linear in arclength, requires more sophisticated mathematics (in particular, the ability to integrate its intrinsic equation) to compute than the proposals that were cited by Rankine.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.