Lithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobic or anaerobic respiration. While lithotrophs in the broader sense include photolithotrophs like plants, chemolithotrophs are exclusively microorganisms; no known macrofauna possesses the ability to use inorganic compounds as electron sources. Macrofauna and lithotrophs can form symbiotic relationships, in which case the lithotrophs are called "prokaryotic symbionts". An example of this is chemolithotrophic bacteria in giant tube worms or plastids, which are organelles within plant cells that may have evolved from photolithotrophic cyanobacteria-like organisms. Chemolithotrophs belong to the domains Bacteria and Archaea. The term "lithotroph" was created from the Greek terms 'lithos' (rock) and 'troph' (consumer), meaning "eaters of rock". Many but not all lithoautotrophs are extremophiles.
The last universal common ancestor of life is thought to be a chemolithotroph (due to its presence in the prokaryotes). Different from a lithotroph is an organotroph, an organism which obtains its reducing agents from the catabolism of organic compounds.
The term was suggested in 1946 by Lwoff and collaborators.
Lithotrophs consume reduced inorganic compounds (electron donors).
A chemolithotroph is able to use inorganic reduced compounds in its energy-producing reactions. This process involves the oxidation of inorganic compounds coupled to ATP synthesis. The majority of chemolithotrophs are chemolithoautotrophs, able to fix carbon dioxide (CO2) through the Calvin cycle, a metabolic pathway in which CO2 is converted to glucose. This group of organisms includes sulfur oxidizers, nitrifying bacteria, iron oxidizers, and hydrogen oxidizers.
The term "chemolithotrophy" refers to a cell's acquisition of energy from the oxidation of inorganic compounds, also known as electron donors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
The iron cycle (Fe) is the biogeochemical cycle of iron through the atmosphere, hydrosphere, biosphere and lithosphere. While Fe is highly abundant in the Earth's crust, it is less common in oxygenated surface waters. Iron is a key micronutrient in primary productivity, and a limiting nutrient in the Southern ocean, eastern equatorial Pacific, and the subarctic Pacific referred to as High-Nutrient, Low-Chlorophyll (HNLC) regions of the ocean.
Sergei Nikolaievich Winogradsky (or Vinohradsky; published under the name of Sergius Winogradsky or M. S. Winogradsky from Сергей Николаевич Виноградский|url= |journal=Infusion & Chemotherapy |language=en |issue=3 |pages=57–64 |doi=10.32902/2663-0338-2022-3-57-64 |issn=2709-0957 microbiologist, ecologist and soil scientist who pioneered the cycle-of-life concept. Winogradsky discovered the first known form of lithotrophy during his research with Beggiatoa in 1887.
The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Background Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (similar to 7 degrees C), hypersaline (7-8% salinity), anoxic (similar ...
New approaches are needed to address low physical activity levels among older adults and to promote daily physical activity tailored to their interests and abilities. This study aimed to review the current literature analyzing the physiological demands of ...
Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II ...