Lorentz groupIn physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: The kinematical laws of special relativity Maxwell's field equations in the theory of electromagnetism The Dirac equation in the theory of the electron The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature.
LeptonIn particle physics, a lepton is an elementary particle of half-integer spin (spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.
Wolfgang PauliWolfgang Ernst Pauli (ˈpɔːli; ˈvɔlfɡaŋ ˈpaʊli; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics for his "decisive contribution through his discovery of a new law of Nature, the exclusion principle or Pauli principle". The discovery involved spin theory, which is the basis of a theory of the structure of matter.
Wave functionIn quantum physics, a wave function (or wavefunction), represented by the Greek letter Ψ, is a mathematical description of the quantum state of an isolated quantum system. In the Copenhagen interpretation of quantum mechanics, the wave function is a complex-valued probability amplitude; the probabilities for the possible results of the measurements made on a measured system can be derived from the wave function. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively).
T-symmetryT-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, Since the second law of thermodynamics states that entropy increases as time flows toward the future, in general, the macroscopic universe does not show symmetry under time reversal. In other words, time is said to be non-symmetric, or asymmetric, except for special equilibrium states when the second law of thermodynamics predicts the time symmetry to hold.
BosonIn particle physics, a boson (ˈboʊzɒn ˈboʊsɒn) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin (, , , ...). Every observed subatomic particle is either a boson or a fermion. Some bosons are elementary particles occupying a special role in particle physics, distinct from the role of fermions (which are sometimes described as the constituents of "ordinary matter").
ParastatisticsIn quantum mechanics and statistical mechanics, parastatistics is one of several alternatives to the better known particle statistics models (Bose–Einstein statistics, Fermi–Dirac statistics and Maxwell–Boltzmann statistics). Other alternatives include anyonic statistics and braid statistics, both of these involving lower spacetime dimensions. Herbert S. Green is credited with the creation of parastatistics in 1953. Consider the operator algebra of a system of N identical particles. This is a *-algebra.
Half-integerIn mathematics, a half-integer is a number of the form where is a whole number. For example, are all half-integers. The name "half-integer" is perhaps misleading, as the set may be misunderstood to include numbers such as 1 (being half the integer 2). A name such as "integer-plus-half" may be more accurate, but even though not literally true, "half integer" is the conventional term. Half-integers occur frequently enough in mathematics and in quantum mechanics that a distinct term is convenient.