Concept

P-process

Summary
The term p-process (p for proton) is used in two ways in the scientific literature concerning the astrophysical origin of the elements (nucleosynthesis). Originally it referred to a proton capture process which is the source of certain, naturally occurring, neutron-deficient isotopes of the elements from selenium to mercury. These nuclides are called p-nuclei and their origin is still not completely understood. Although it was shown that the originally suggested process cannot produce the p-nuclei, later on the term p-process was sometimes used to generally refer to any nucleosynthesis process supposed to be responsible for the p-nuclei. Often, the two meanings are confused. Recent scientific literature therefore suggests to use the term p-process only for the actual proton capture process, as it is customary with other nucleosynthesis processes in astrophysics. Proton-rich nuclides can be produced by sequentially adding one or more protons to an atomic nucleus. Such a nuclear reaction of type (p,γ) is called proton capture reaction. By adding a proton to a nucleus, the element is changed because the chemical element is defined by the proton number of a nucleus. At the same time the ratio of protons to neutrons is changed, resulting in a more neutron-deficient isotope of the next element. This led to the original idea for the production of p-nuclei: free protons (the nuclei of hydrogen atoms are present in stellar plasmas) should be captured on heavy nuclei (seed nuclei) also already present in the stellar plasma (previously produced in the s-process and/or r-process). Such proton captures on stable nuclides (or nearly stable), however, are not very efficient in producing p-nuclei, especially the heavier ones, because the electric charge increases with each added proton, leading to an increased repulsion of the next proton to be added, according to Coulomb's law. In the context of nuclear reactions this is called a Coulomb barrier. The higher the Coulomb barrier, the more kinetic energy a proton requires to get close to a nucleus and be captured by it.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.